Advertisement
Original communication| Volume 142, ISSUE 3, P384-392, September 2007

Thermal sensitization through ROS modulation: A strategy to improve the efficacy of hyperthermic intraperitoneal chemotherapy

      Background

      The purpose of this study was to investigate whether modulation of cellular reactive oxygen species (ROS) provides a synergistic effect with hyperthermia to induce tumor cell death in a colon cancer cell line.

      Materials and Methods

      HT-29 colon cancer cells were exposed to heat (43°C) in the presence of the ROS-generating drug, 2-2′-azobis-(2-amidinopropane) dihydrochloride (AAPH) for 1 h. Viable cell mass and apoptosis was measured by MTT and annexin V staining, respectively. Oxidative stress was evaluated by DCFH fluorescence. Protein levels were determined by Western blot analysis.

      Results

      A synergistic effect on cell viability with AAPH was noted under hyperthermic conditions as compared with hyperthermia alone (P < .05). The number of nonviable cells after hyperthermia and AAPH exposure was also significantly increased compared with AAPH at 37°C (42% vs 20%, P < .05). ROS levels were increased modestly with AAPH at 37°C, whereas they increased significantly in a dose-dependent manner with AAPH at 43°C. Transient increases of phosphorylated-p38 and ERK and decreases in phosphorylated-AKT were observed in the cells exposed to AAPH at 43°C. Pretreatment of inhibitors of p38 yielded additional decreases in cell mass when used in combination with AAPH and hyperthermia (P < .05). Increased expression of HSP 27 observed at 43°C was abrogated with AAPH exposure.

      Conclusions

      Oxidative stress increased the cytotoxic effects of hyperthermia in colon cancer cells. Thermal sensitization through modulation of cellular ROS may represent a novel approach to increase the efficacy of hyperthermia as an anticancer modality.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Surgery
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Carraro P.G.
        • Segala M.
        • Cesana B.M.
        • Tiberio G.
        Obstructing colonic cancer: failure and survival patterns over a ten-year follow-up after one-stage curative surgery.
        Dis Colon Rect. 2001; 44: 243-250
        • Jayne D.G.
        • Fook S.
        • Loi C.
        • Seow-Choen F.
        Peritoneal carcinomatosis from colorectal cancer.
        Br J Surg. 2002; 89: 1545-1550
        • Elias D.
        • Blot F.
        • El Otmany A.
        • Antoun S.
        • Lasser P.
        • Boige V.
        • et al.
        Curative treatment of peritoneal carcinomatosis arising from colorectal cancer by complete resection and intraperitoneal chemotherapy.
        Cancer. 2001; 92: 71-76
        • Loggie B.W.
        • Fleming R.A.
        • McQuellon R.P.
        • Russel G.B.
        • Geisinger K.R.
        Cytoreductive surgery with intraperitoneal hyperthermic chemotherapy for disseminated peritoneal cancer of gastrointestinal origin.
        Am Surg. 2000; 66: 561-568
        • Shen P.
        • Levine E.A.
        • Hall J.
        • Case D.
        • Russell G.
        • Fleming R.
        • et al.
        Factors predicting survival after intraperitoneal hyperthermic chemotherapy with mitomycin C after cytoreductive surgery for patients with peritoneal carcinomatosis.
        Arch Surg. 2003; 138: 26-33
        • Verwaal V.J.
        • van Ruth S.
        • de Bree E.
        • van Sloothen G.W.
        • van Tinteren H.
        • Boot H.
        • et al.
        Randomized trial of cytoreduction and hyperthermic intraperitoneal chemotherapy versus systemic chemotherapy and palliative surgery in patients with peritoneal carcinomatosis of colorectal cancer.
        J Clin Oncol. 2003; 21: 3737-3743
        • Lepock J.R.
        How do cells respond to their thermal environment?.
        Int J Hypertherm. 2005; 21: 681-687
        • Krishna M.C.
        • Dewhirst M.W.
        • Friedman H.S.
        • Cook J.A.
        • De Graff W.
        • Samuni T.A.
        • et al.
        Hyperthermic sensitization by the radical initiator 2,2′-azobis (2-amidinopropane) dihydrochloride (AAPH).
        Internat J Hypertherm. 1994; 10: 271-281
        • Yuki H.
        • Kondo T.
        • Zhao Q.L.
        • Fujiwara Y.
        • Tanabe K.
        • Ogawa R.
        • et al.
        A free radical initiator, 2,2′-azobis (2-aminopropane) dihydrochloride enhances hyperthermia-induced apoptosis in human uterine cervical cancer cell lines.
        Free Radical Res. 2003; 37: 631-643
        • Rosenkranz A.R.
        • Schmaldienst S.
        • Stuhlmeier K.M.
        • Chen W.
        • Knapp W.G.
        • Zlabinger J.
        A microplate assay for the detection of oxidative products using 2′,7′-dichlorofluorescin-diacetate.
        J Immunol Meth. 1992; 156: 39-45
        • Hildebrandt B.
        • Wust P.
        • Ahlers O.
        • Dieing A.
        • Sreenivasa G.
        • Kerner T.
        • et al.
        The cellular and molecular basis of hyperthermia.
        Crit Rev Oncol-Hematol. 2002; 43: 33-56
        • Jacquet P.
        • Stephens A.D.
        • Averbach A.M.
        • Chang D.
        • Ettinghausen S.E.
        • Dalton R.R.
        • et al.
        Analysis of morbidity and mortality in 60 patients with peritoneal carcinomatosis treated by cytoreductive surgery and heated intraoperative intraperitoneal chemotherapy.
        Cancer. 1996; 77: 2622-2629
        • Arai Y.
        • Kondo T.
        • Tanabe K.
        • Zhao Q.L.
        • Li F.J.
        • Ogawa R.
        Enhancement of hyperthermia-induced apoptosis by local anesthetics on human histiocytic lymphoma U937 cells.
        J Biol Chem. 2002; 277: 18986-18993
        • Shchepotin I.B.
        • Buras R.R.
        • Nauta R.J.
        • Shabahang M.
        • Evans S.R.
        Effect of mitomycin C, verapamil, and hyperthermia on human gastric adenocarcinoma.
        Cancer Chemother Pharmacol. 1994; 34: 257-260
        • Wachsberger P.R.
        • Burd R.
        • Bhala A.
        • Bobyock S.B.
        • Wahl M.L.
        • Owen C.S.
        • et al.
        Quercetin sensitizes cells in a tumour-like low pH environment to hyperthermia.
        Internat J Hypertherm. 2003; 19: 507-519
        • Boonstra J.
        • Post J.A.
        Molecular events associated with reactive oxygen species and cell cycle progression in mammalian cells.
        Gene. 2004; 337: 1-13
        • Davidson J.F.
        • Whyte B.
        • Bissinger P.H.
        • Schiestl R.H.
        Oxidative stress is involved in heat-induced cell death in Saccharomyces cerevisiae.
        Proc Natl Acad Sci U S A. 1996; 93: 5116-5121
        • Flanagan S.W.
        • Moseley P.L.
        • Buettner G.R.
        Increased flux of free radicals in cells subjected to hyperthermia: detection by electron paramagnetic resonance spin trapping.
        FEBS Lett. 1998; 431: 285-286
        • Matsumoto H.
        • Hayashi S.
        • Hatashita M.
        • Ohnishi K.
        • Ohtsubo T.
        • Kitai R.
        • et al.
        Nitric oxide is an initiator of intercellular signal transduction for stress response after hyperthermia in mutant p53 cells of human glioblastoma.
        Cancer Res. 1999; 59: 3239-3244
        • Rudin C.M.
        • Yang Z.
        • Schumaker L.M.
        • VanderWheele D.J.
        • Newkirk K.
        • Egorin M.J.
        • et al.
        Inhibition of glutathione synthesis reverses Bcl-2-mediated cisplatin resistance.
        Cancer Res. 2003; 63: 312-318
        • Miller R.A.
        • Woodburn K.W.
        • Fan Q.
        • Lee I.
        • Miles D.
        • Duran G.
        • et al.
        Motexafin gadolinium: a redox active drug that enhances the efficacy of bleomycin and doxorubicin.
        Clin Can Res. 2001; 7: 3215-3221
        • Lebedeva I.V.
        • Su Z.Z.
        • Sarkar D.
        • Gopalkrishnan R.V.
        • Waxman S.
        • Yacoub A.
        • et al.
        Induction of reactive oxygen species renders mutant and wild-type K-ras pancreatic carcinoma cells susceptible to Ad.mda-7-induced apoptosis.
        Oncogene. 2005; 24: 585-596
        • McClain D.E.
        • Kalinich J.F.
        • Ramakrishnan N.
        Trolox inhibits apoptosis in irradiated MOLT-4 lymphocytes.
        FASEB J. 1995; 9: 1345-1354
        • Ramakrishnan N.
        • McClain D.E.
        • Catravas G.N.
        Membranes as sensitive targets in thymocyte apoptosis.
        Internat J Radiat Biol. 1993; 63: 693-701
        • Raspor P.
        • Plesnicar S.
        • Gazdag Z.
        • Pesti M.
        • Miklavcic M.
        • Lah B.
        • et al.
        Prevention of intracellular oxidation in yeast: the role of vitamin E analogue, Trolox (6-hydroxy-2,5,7,8-tetramethylkroman-2-carboxyl acid).
        Cell Biol Internat. 2005; 29: 57-63
        • Yatvin M.B.
        • Cramp W.A.
        Role of cellular membranes in hyperthermia: some observations and theories reviewed.
        Internat J Hypertherm. 1993; 9: 165-185
        • Matsuzawa A.
        • Ichijo H.
        Stress-responsive protein kinases in redox-regulated apoptosis signaling.
        Antiox Redox Signal. 2005; 7: 472-481
        • Kim H.J.
        • Chakravarti N.
        • Oridate N.
        • Choe C.
        • Claret F.X.
        • Lotan R.
        N-(4-hydroxyphenyl)retinamide-induced apoptosis triggered by reactive oxygen species is mediated by activation of MAPKs in head and neck squamous carcinoma cells.
        Oncogene. 2006; 25: 2785-2794
        • Xia Z.
        • Dickens M.
        • Raingeaud J.
        • Davis R.J.
        • Greenberg M.E.
        Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis.
        Science. 1995; 270: 1326-1331
        • Roulston A.
        • Reinhard C.
        • Amiri P.
        • Williams L.T.
        Early activation of c-Jun N-terminal kinase and p38 kinase regulate cell survival in response to tumor necrosis factor alpha.
        J Biol Chem. 1998; 273: 10232-10239
        • Nemoto S.
        • Xiang J.
        • Huang S.
        • Lin A.
        Induction of apoptosis by SB202190 through inhibition of p38beta mitogen-activated protein kinase.
        J Biol Chem. 1998; 273: 16415-16420
        • Martindale J.L.
        • Holbrook N.J.
        Cellular response to oxidative stress: signaling for suicide and survival.
        J Cell Physiol. 2002; 192: 1-15
        • Brand A.
        • Gil S.
        • Seger R.
        • Yavin E.
        Lipid constituents in oligodendroglial cells alter susceptibility to H2O2-induced apoptotic cell death via ERK activation.
        J Neurochem. 2001; 76: 910-918
        • Wang X.
        • Martindale J.L.
        • Holbrook N.J.
        Requirement for ERK activation in cisplatin-induced apoptosis.
        J Biol Chem. 2000; 275: 39435-39443
        • Vivanco I.
        • Sawyers C.L.
        The phosphatidylinositol 3-Kinase AKT pathway in human cancer.
        Nat Rev Cancer. 2002; 2: 489-501
        • Han H.
        • Wang H.
        • Long H.
        • Nattel S.
        • Wang Z.
        Oxidative preconditioning and apoptosis in L-cells.
        J Biol Chem. 2001; 276: 26357-26364
        • Wang X.
        • McCullough K.D.
        • Franke T.F.
        • Holbrook N.J.
        Epidermal growth factor receptor-dependent Akt activation by oxidative stress enhances cell survival.
        J Biol Chem. 2000; 275: 14624-14631
        • Landry J.
        • Chretien P.
        • Lambert H.
        • Hickey E.
        • Weber L.A.
        Heat shock resistance conferred by expression of the human HSP27 gene in rodent cells.
        J Cell Biol. 1989; 109: 7-15
        • Samali A.
        • Cotter T.G.
        Heat shock proteins increase resistance to apoptosis.
        Experim Cell Res. 1996; 223: 163-170