Advertisement
Original communication| Volume 143, ISSUE 1, P79-93, January 2008

Download started.

Ok

Coordinated, diurnal hexose transporter expression in rat small bowel: Implications for small bowel resection

Published:November 30, 2007DOI:https://doi.org/10.1016/j.surg.2007.06.007

      Background

      Hexose transporter mRNA and protein levels follow a diurnal rhythm in rat jejunum. Their coordinated expression and resultant function throughout the small bowel is not well understood. We hypothesized that hexose transporter levels and glucose absorption follow a coordinated, site-specific diurnal rhythm in rat duodenum and jejunum, but not in ileum.

      Methods

      Sprague-Dawley rats were housed in a strictly maintained, 12-h, light/dark room [light 6 am to 6 pm] with free access to water and chow. Mucosa was harvested from duodenum, jejunum, and ileum at 3 am, 9 am, 3 pm, and 9 pm, and full thickness 1-cm segments were harvested at 9 am, and 9 pm (n = 6 for each segment at each time point). mRNA levels were determined by reverse-transcription, real-time polymerase chain reaction (n ≥ 5), protein levels by semiquantitative Western blotting (n ≥ 5), and transporter-mediated glucose uptake by everted sleeve technique (n = 6).

      Results

      mRNA levels of SGLT1 and GLUT5 followed a temporally coordinated, diurnal rhythm in all 3 segments (P < .01), while mRNA for GLUT2 and protein levels for SGLT1 and GLUT2 varied diurnally only in duodenum and jejunum (P > .05) but not in ileum (P > .10). SGLT1 and GLUT5 mRNA induction decreased aborally. Baseline SGLT1 and GLUT5 mRNA levels and SLGT1 and GLUT2 protein levels did not vary aborally (P > .05 for all). GLUT2 mRNA baseline levels were decreased in ileum (P < .01). Glucose uptake varied diurnally in duodenum and jejunum with no difference in ileum. Transporter-mediated glucose uptake was greater in duodenum and jejunum compared with ileum.

      Conclusion

      Regulation of hexose absorption in rat small bowel seems to be site-specific and mediated by multiple mechanisms.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Surgery
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Corpe C.P.
        • Burant C.F.
        Hexose transporter expression in rat small intestine: effect of diet on diurnal variations.
        Am J Physiol Gastrointest Liver Physiol. 1996; 271: G211-G216
        • Houghton S.G.
        • Zarroug A.E.
        • Duenes J.A.
        • Fernandez-Zapico M.E.
        • Sarr M.G.
        The diurnal periodicity of hexose transporter mRNA and protein levels in the rat jejunum: role of vagal innervation.
        Surgery. 2006; 139: 542-549
        • Castello A.
        • Guma A.
        • Sevilla L.
        • Furriols M.
        • Testar X.
        • Palacín M.
        • et al.
        Regulation of GLUT5 gene expression in rat intestinal mucosa: regional distribution, circadian rhythm, perinatal development and effect of diabetes.
        Biochem J. 1995; 309: 271-277
        • Pan X.
        • Terada T.
        • Irie M.
        • Saito H.
        • Inui K.
        Diurnal rhythm of H+- peptide cotransporter in rat small intestine.
        Am J Physiol Gastrointest Liver Physiol. 2002; 283: G57-G64
        • Pan X.
        • Terada T.
        • Okuda M.
        • Inui K.
        The diurnal rhythm of the intestinal transporters SGLT1 and PEPT1 is regulated by the feeding conditions in rats.
        J Nutr. 2004; 134: 2211-2215
        • Rhoads D.B.
        • Rosenbaum D.H.
        • Unsal H.
        • Illelbacher K.J.
        • Levitsky L.L.
        Circadian periodicity of intestinal Na+/glucose cotransporter 1 mRNA levels is transcriptionally regulated.
        J Biol Chem. 1998; 273: 9510-9516
        • Tavakkolizadeh A.
        • Berger U.V.
        • Shen R.
        • Levitsky L.L.
        • Zinner M.J.
        • Hediger M.A.
        • et al.
        Diurnal rhythmicity in intestinal SGLT-1 function, Vmax, and mRNA expression topotraphy.
        Am J Physiol Gastrointest Liver Physiol. 2001; 280: G209-G215
        • Tavakkolizadeh A.
        • Ramsanahie A.
        • Levitsky L.L.
        • Zinner M.J.
        • Whang E.E.
        • Ashley S.W.
        • et al.
        Differential role of vagus nerve in maintaining diurnal gene expression rhythms in the proximal small intestine.
        J Surg Res. 2005; 129: 73-78
        • Inukai K.
        • Asano T.
        • Katagiri H.
        • Ishihara H.
        • Anai M.
        • Fukushima Y.
        • et al.
        Cloning and increased expression with fructose feeding of rat jejunal GLUT5.
        Endocrinology. 1993; 133: 2009-2014
        • Shu R.
        • David E.S.
        • Ferraris R.P.
        Dietary fructose enhances intestinal fructose transport and GLUT5 expression in weaning rats.
        Am J Physiol Gastrointest Liver Physiol. 1997; 272: G446-G453
        • Baba R.
        • Yamami M.
        • Sakuma Y.
        • Fujita M.
        • Fujimoto S.
        Relationship between glucose transporter and changes in the absorptive system in small intestinal absorptive cells during the weaning process.
        Med Mol Morphol. 2005; 38: 47-53
        • Hediger M.
        • Rhoads D.B.
        Molecular physiology of sodium-glucose cotransporters.
        Physiol Rev. 1994; 74: 993-1026
        • Lenzen S.
        • Lortz S.
        • Teidge M.
        Effects of metformin on SGLT1, GLUT2, and GLUT5 hexose transporter gene expression in small intestine from rats.
        Biochem Pharmacol. 1996; 51: 893-896
        • Pritchard P.J.
        • Porteous J.W.
        Steady-state metabolism and transport of D-glucose by rat small intestine in vitro.
        Biochem J. 1977; 164: 1-14
        • Bustin S.A.
        Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems.
        J Mol Endocrinol. 2002; 29: 23-39
        • Houghton S.G.
        • Cockerill F.R.
        Real-time PCR: overview and applications.
        Surgery. 2006; 139: 1-5
        • Stahlberg A.
        • Hakansson J.
        • Xian X.
        • Semb H.
        • Kubista M.
        Properties of the reverse transcription reaction in mRNA quantification.
        Clin Chem. 2004; 50: 509-515
        • Brown S.A.
        • Ripperger J.
        • Kadener S.
        • Fleury-Olela F.
        • Vilbois F.
        • Rosbash M.
        • et al.
        PERIOD1-associated proteins modulate the negative limb of the mammalian circadian oscillator.
        Science. 2005; 308: 693-696
        • Zhang J.S.
        • Moncrieffe M.C.
        • Kaczynski J.
        • Ellenrieder V.
        • Prendergast F.G.
        • Urrutia R.
        A conserved alpha-helical motif mediates the interaction of Sp1-like transcriptional repressors with the corepressor mSin3A.
        Mol Cell Biol. 2001; 21: 5041-5049
        • Karasov W.H.
        • Diamond J.M.
        A simple method for measuring intestinal solute uptake in vitro.
        J Comp Physiol. 1983; 152: 105-116
        • Motohashi H.
        • Masuda S.
        • Katsura T.
        • Saito H.
        • Sakamoto S.
        • Uemoto S.
        • et al.
        Expression of peptide transporter following intestinal transplantation in the rat.
        J Surg Res. 2001; 99: 294-300
        • Martin M.G.
        • Lostao M.P.
        • Turk E.
        • Lam J.
        • Kreman M.
        • Wright E.M.
        Compound missense mutations in the sodium/D-glucose cotransporter result in trafficking defects.
        Gastroenterology. 1997; 112: 1206-1212
        • Corpe C.P.
        • Burant C.F.
        • Hoekstra J.H.
        Intestinal fructose absorption: clinical and molecular aspects.
        J Pediatr Gastroenterol Nutr. 1999; 28: 364-374
        • Lee P.D.
        • Sladek R.
        • Greenwood C.M.T.
        • Hudson T.J.
        Control genes and variability: absence of ubiquitous reference transcripts in diverse mammalian expression studies.
        Genome Res. 2001; 12: 292-297
        • Schmittgen T.D.
        • Zakrajsek B.A.
        Effect of experimental treatment on housekeeping gene expression: validation by real-time, quantitative RT-PCR.
        J Biochem Biophys Methods. 2000; 46: 69-81
        • Affleck J.A.
        • Helliwell P.A.
        • Kellett G.A.
        Immunocytochemical detection of GLUT2 at the rat intestinal brush-border membrane.
        J Histochem Cytochem. 2003; 51: 1567-1574
        • Kellett G.L.
        The facilitated component of intestinal glucose absorption.
        J Physiol. 2001; 531.3: 585-595
        • Kellett G.L.
        • Helliwell P.A.
        The diffusive component of intestinal glucose absorption is mediated by the glucose-induced recruitment of GLUT2 to the brush-border membrane.
        Biochem J. 2000; 350: 155-162