Advertisement
Original communication| Volume 143, ISSUE 1, P94-102, January 2008

Role of β1-, β2-, and β3-adrenoceptors in contractile hypersensitivity in a model of small bowel transplantation

Published:November 30, 2007DOI:https://doi.org/10.1016/j.surg.2007.06.034

      Background

      Chronic extrinsic denervation induced by small bowel transplantation (SBT) results in adrenergic hypersensitivity in rat ileum. This study evaluated the role of neuronal and/or muscular β1-, β2-, and β3-adrenoceptor (AR) mechanisms on contractility.

      Methods

      Ileal longitudinal muscle strips from Lewis rats (n = 6 rats per group, 8 strips per rat): naïve controls (NC), 4 months after sham operation (SC) or after syngeneic orthotopic SBT were studied in vitro. Spontaneous contractile activity and dose responses (10−8-10−4 mol) to isoprenaline (IP), a nonspecific β-AR agonist were studied with or without selective antagonists (10−5 mol), for β1- (atenolol), β2- (ICI 118551), or β3- (SR 59230A) AR subtypes in the presence or absence of tetrodotoxin (TTX; 10−6 mol; nerve blocker).

      Results

      pEC50 (neg log of EC50, which is the concentration where 50% of inhibition was observed) of IP was 7.2 ± 0.2 (mean value ± SEM) in SBT vs 6.3 ± 0.1 in SC and 6.3 ± 0.2 in NC (both P < .05 vs SBT), reflecting adrenergic hypersensitivity. β1- and β2-AR blockade induced a TTX-sensitive right shift of the curve only in SBT and normalized pEC50 values from 7.2 ± 0.2 to 6.4 ± 0.1 and 7.2 ± 0.2 to 6.6 ± 0.1, respectively (P < .05). β3-AR blockade shifted the curve independent of the presence of TTX to the right in all groups (all P < .05).

      Conclusions

      In rat ileum, adrenergic inhibition of contractility was dependent on muscular β3-AR pathways, whereas posttransplant hypersensitivity was due to upregulated neuronal β1- and β2-AR mechanisms that were inactive before SBT.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Surgery
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Abu-Elmagd K.
        • Bond G.
        Gut failure and abdominal visceral transplantation.
        Proc Nutr Soc. 2003; 62: 727-737
        • Nishida S.
        • Levi D.
        • Kato T.
        • Nery J.R.
        • Mittal N.
        • Hadjis N.
        • et al.
        Ninety-five cases of intestinal transplantation at the University of Miami.
        J Gastrointest Surg. 2002; 6: 233-239
        • Dionigi P.
        • Alessiani M.
        • Ferrazi A.
        Irreversible intestinal failure, nutrition support, and small bowel transplantation.
        Nutrition. 2001; 17: 747-750
        • Hutson W.R.
        • Putnam P.E.
        • Todo S.
        • Abu-Elmagd K.
        • Reynolds J.R.
        • Furukawa H.
        Gastric and small intestinal motility in humans following small bowel transplantation (SBT).
        Gastroenterology. 1993; 104: A525
        • Asfar S.
        • Atkison P.
        • Ghent C.
        • Duff J.
        • Wall W.
        • Williams S.
        • et al.
        Small bowel transplantation.
        Dig Dis Sci. 1996; 41: 875-883
        • Reyes J.
        • Bueno J.
        • Kocoshis S.
        • Green M.
        • Abu-Elmagd K.
        • Furukawa H.
        • et al.
        Current status of intestinal transplantation in children.
        J Pediatr Surg. 1998; 33: 243-254
        • Sarr M.G.
        Motility and absorption in the transplanted gut.
        Transplant Proc. 1996; 28: 2535-2538
        • Ohtani N.
        • Balsiger B.M.
        • Anding W.J.
        • Duenes J.A.
        • Sarr M.G.
        Small bowel transplantation induces adrenergic hypersensitivity in ileal longitudinal smooth muscle in rats.
        J Gastrointest Surg. 2000; 4: 77-85
        • Shibata C.
        • Balsiger B.M.
        • Anding W.J.
        • Sarr M.G.
        Adrenergic denervation hypersensitivity in ileal circular smooth muscle after small bowel transplantation in rats.
        Dig Dis Sci. 1997; 42: 2213-2221
        • Seiler R.
        • Rickenbacher A.
        • Shaw S.
        • Balsiger B.M.
        alpha- and beta-adrenergic receptor mechanisms in spontaneous contractile activity of rat ileal longitudinal smooth muscle.
        J Gastrointest Surg. 2005; 9: 227-235
        • Murr M.M.
        • Miller V.M.
        • Sarr M.G.
        Contractile properties of enteric smooth muscle after small bowel transplantation in rats.
        Am J Surg. 1996; 171: 212-217
        • Langin D.
        • Portillo M.P.
        • Saulnier-Blache J.S.
        • Lafontan M.
        Coexistence of three beta-adrenoceptor subtypes in white fat cells of various mammalian species.
        Eur J Pharmacol. 1991; 199: 291-301
        • Bylund D.B.
        • Bond R.A.
        • Clarke D.E.
        • Eikenburg D.C.
        • Hieble J.P.
        • Langer S.Z.
        • et al.
        Adrenoceptors.
        in: The IUPHAR compendium of receptor characterisation and classification. IUPHAR Media, London1998: 58-74
        • Gordon A.R.
        • Siegman M.J.
        Mechanical properties of smooth muscle.
        Am J Physiol. 1971; 221: 1243-1249
        • Sakai Y.
        • Daniel E.E.
        • Jury J.
        • Fox J.E.
        Neurotensin inhibition of canine intestinal motility in vivo via alpha-adrenoceptors.
        Can J Physiol Pharmacol. 1984; 62: 403-411
        • Brown K.J.
        • Summers R.J.
        beta(1)- and beta(3)-adrenoceptor mediated smooth muscle relaxation in hypothyroid rat ileum.
        Eur J Pharmacol. 2001; 415: 257-263
        • Balsiger B.M.
        • Duenes J.A.
        • Ohtani N.
        • Shibata C.
        • Farrugia G.
        • Anding W.J.
        • et al.
        Nitric oxide pathways in circular muscle of the rat jejunum before and after small bowel transplantation.
        J Gastrointest Surg. 2000; 4: 86-92
        • Balsiger B.M.
        • Ohtani N.
        • Anding W.J.
        • Duenes J.A.
        • Sarr M.G.
        Chronic extrinsic denervation after small bowel transplantation in rat jejunum: effects and adaptation in nitrergic and non-nitrergic neuromuscular inhibitory mechanisms.
        Surgery. 2001; 129: 478-489
        • Hutchinson D.S.
        • Evans B.A.
        • Summers R.J.
        beta(1)-Adrenoceptors compensate for beta(3)-adrenoceptors in ileum from beta(3)-adrenoceptor knock-out mice.
        Br J Pharmacol. 2001; 132: 433-442
        • Susulic V.S.
        • Frederich R.C.
        • Lawitts J.
        • Tozzo E.
        • Kahn B.B.
        • Harper M.E.
        • et al.
        Targeted disruption of the beta 3-adrenergic receptor gene.
        J Biol Chem. 1995; 270: 29483-29492
        • Farrukh H.M.
        • White M.
        • Port J.D.
        • Handwerger D.
        • Larrabee P.
        • Klein J.
        • et al.
        Up-regulation of beta 2-adrenergic receptors in previously transplanted, denervated nonfailing human hearts.
        J Am Coll Cardiol. 1993; 22: 1902-1908
        • Brodde O.E.
        • Khamssi M.
        • Zerkowski H.R.
        Beta-adrenoceptors in the transplanted human heart: unaltered beta-adrenoceptor density, but increased proportion of beta 2-adrenoceptors with increasing posttransplant time.
        Naunyn Schmiedebergs Arch Pharmacol. 1991; 344: 430-436
        • Wagner J.
        • Nick B.
        • Rohm N.
        • Schumann H.J.
        On the coexistence of beta 1- and beta 2-adrenoceptors in various organs.
        Arch Int Pharmacodyn Ther. 1981; 249: 26-38
        • Bilski A.J.
        • Halliday S.E.
        • Fitzgerald J.D.
        • Wale J.L.
        The pharmacology of a beta 2-selective adrenoceptor antagonist (ICI 118,551).
        J Cardiovasc Pharmacol. 1983; 5: 430-437
        • Dennedy M.C.
        • Houlihan D.D.
        • McMillan H.
        • Morrison J.J.
        Beta2- and beta3-adrenoreceptor agonists: human myometrial selectivity and effects on umbilical artery tone.
        Am J Obstet Gynecol. 2002; 187: 641-647
        • Baker J.G.
        The selectivity of beta-adrenoceptor antagonists at the human beta1, beta2 and beta3 adrenoceptors.
        Br J Pharmacol. 2005; 144: 317-322
        • Hammond H.K.
        • Roth D.A.
        • Ford C.E.
        • Stamnas G.W.
        • Ziegler M.G.
        • Ennis C.
        Myocardial adrenergic denervation supersensitivity depends on a postreceptor mechanism not linked with increased cAMP production.
        Circulation. 1992; 85: 666-679
        • Horinouchi T.
        • Koike K.
        Functional identification of beta3-adrenoceptors in the guinea-pig ileum using the non-selective beta-adrenoceptor antagonist (+/−)-bupranolol.
        J Auton Pharmacol. 2000; 20: 253-258
        • Anthony A.
        • Schepelmann S.
        • Guillaume J.L.
        • Strosberg A.D.
        • Dhillon A.P.
        • Pounder R.E.
        • et al.
        Localization of the beta(beta)3-adrenoceptor in the human gastrointestinal tract: an immunohistochemical study.
        Aliment Pharmacol Ther. 1998; 12: 519-525