Advertisement
Original Communication| Volume 143, ISSUE 4, P545-555, April 2008

A novel tumor necrosis factor-α suppressant, ONO-SM362, prevents liver failure and promotes liver regeneration after extensive hepatectomy

Published:February 13, 2008DOI:https://doi.org/10.1016/j.surg.2007.11.010

      Background

      Tumor necrosis factor (TNF)-α is a cytokine that initiates liver regeneration after hepatectomy (HTx), although extensive HTx can cause liver failure with significant rise in serum TNF-α levels. To test our hypothesis that modulation of endogenous TNF-α attenuates liver failure even after extensive HTx, we used ONO-SM362, a novel TNF-α inhibitor, in mice subjected to 85% HTx.

      Methods

      ICR mice were divided into 5 groups: 70% HTx, 85% HTx, 85% HTx plus ONO-SM362, 85% HTx plus monoclonal TNF-α antibody (mAb), and 85% HTx plus FR167653, a TNF-α inhibitor. We analyzed the survival rate, blood ammonia (NH3), serum TNF-α levels, TNF-α mRNA expression in the liver and spleen by real-time polymerase chain reaction, histologic changes, polymorphonuclear neutrophils (PMNs) infiltration, and proliferating cell nuclear antigen labeling index (PCNA LI) in the 5 groups.

      Results

      The survival rate at 7 days after surgery was 100%, 0%, 100%, 50%, and 0%, for the 70% HTx, 85% HTx, 85% HTx + ONO-SM362, 85% HTx + mAb, and 85% HTx + FR167653, respectively. Mice that underwent 85% HTx died from liver failure associated with a significant rise in serum TNF-α level. ONO-SM362 and mAb improved animal survival and enhanced PCNA LI. In addition, ONO-SM362 inhibited TNF-α mRNA expression in the remnant liver and suppressed PMNs infiltration.

      Conclusions

      Suppression of excessive TNF-α production using ONO-SM362 ameliorated liver failure after 85% HTx.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Surgery
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Tuczek H.V.
        • Rabes H.
        Verlust der proliferationsfahigkeit der hepatozyten nach subtotaler hepatektomie.
        Experientia. 1971; 27: 526
        • Panis Y.
        • McMullan D.M.
        • Emond J.C.
        Progressive necrosis after hepatectomy and the pathological of liver failure after massive resection.
        Surgery. 1997; 121: 142-149
        • Mochida S.
        • Ogata I.
        • Hirata K.
        • Ohta Y.
        • Yamada S.
        • Fujiwara K.
        Provocation of massive hepatic necrosis by endotoxin after partial hepatectomy in rats.
        Gastroenterology. 1990; 99: 771-777
        • Cai S.R.
        • Motoyama K.
        • Shen K.J.
        • Kennedy S.C.
        • Flye M.W.
        • Ponder K.P.
        Lovastain decreases mortality and improves liver functions in fulminant hepatic failure from 90% partial hepatectomy in rats.
        J Hepatol. 2000; 32: 67-77
        • Nagao M.
        • Isaji S.
        • Iwata M.
        • Kawarada Y.
        The remnant liver dysfunction after 84% hepatectomy in dogs.
        Hepatogastroenterology. 2000; 47: 1564-1569
        • Hasegawa S.
        • Kubota T.
        • Fukuyama N.
        • Kurosawa H.
        • Sekido H.
        • Togo S.
        • et al.
        Apoptosis of hepatocytes is a main cause of inducing lethal hepatic failure after excessive hepatectomy in rats.
        Transplant Proc. 1999; 31: 558-559
        • Taub R.
        • Greenbaum L.
        • Peng Y.
        Transcriptional regulatory signals define cytokine-dependent and-independent pathways in liver regeneration.
        Semin Liver Dis. 1999; 19: 117-127
        • Yamada Y.
        • Kirillova I.
        • Peschon J.J.
        • Fausto N.
        Initiation of liver growth by tumor necrosis factor; Deficient liver regeneration in mice lacking type 1 tumor necrosis factor receptor.
        Proc Natl Acad Sci USA. 1997; 94: 1441-1446
        • Babior B.M.
        • Peters W.A.
        The O2-producing enzyme of human neutrophils.
        J Biol Chem. 1981; 256: 2321-2323
        • Weiss S.J.
        Tissue destruction by neutrophils.
        N Engl J Med. 1989; 320: 365-376
        • Otani Y.
        • Takeyoshi I.
        • Koibuchi Y.
        • Matsumoto K.
        • Muramoto M.
        • Morishita Y.
        The effect of FR167653 on pulmonary ischemia-reperfusion injury in rats.
        J Heart Lung Transplant. 2000; 19: 377-383
        • Kobayashi J.
        • Takeyoshi I.
        • Ohwada S.
        • Iwanami K.
        • Matsumoto K.
        • Muramoto M.
        • et al.
        The effects of FR167653 in extended liver resection with ischemia in dogs.
        Hepatology. 1998; 28: 459-465
        • Higgins G.M.
        • Anderson R.M.
        Experimental pathology of the liver.
        Arch Pathol. 1931; 12: 186-202
        • Gaub J.
        • Iversen J.
        Rat liver regeneration after 90% partial hepatectomy.
        Hepatology. 1984; 4: 902-904
        • Schossberg H.
        • Zhang Y.
        • Dudus L.
        • Engerhardt J.F.
        Expression of c-fos and c-jun during hepatocellular remodeling following ischemia/reperfusion in mouse liver.
        Hepatology. 1996; 23: 1546-1555
        • Kreuzer K.A.
        • Lass U.
        • Bohn A.
        • Landt O.
        • Schmidt C.A.
        Light cycler technology for the quantification of bcr/abl fusion transcripts.
        Cancer Res. 1999; 59: 3171-3174
        • Spagnuolo-Weaver M.
        • Fuerst R.
        • Campbell S.T.
        • Meehan B.M.
        • McNeilly F.
        • Adair B.
        • et al.
        A fluorimeter-based RT-PCR method for the detection and quantitation of porcine cytokine.
        J Immunol Methods. 1999; 230: 19-27
        • Akerman P.
        • Cote P.
        • Yang S.Q.
        • McClain C.
        • Nelson S.
        • Bagby G.J.
        • et al.
        Antibody to tumor necrosis factor-α inhibit liver regeneration after partial hepatectomy.
        Am J Physiol. 1992; 263: G579-G585
        • Shiratori Y.
        • Hongo S.
        • Hikiba Y.
        • Ohmura K.
        • Nagura T.
        • Okano K.
        • et al.
        Role of macrophages in regeneration of liver.
        Dig Dis Sci. 1996; 41: 1939-1946
        • Diehl A.M.
        • Rai R.M.
        Regulation of signal transduction during liver regeneration.
        FASEB J. 1996; 10: 215-227
        • Satoh M.
        • Yamazaki M.
        Tumor necrosis factor stimulates DNA synthesis of mouse hepatocytes in primary culture and is suppressed by transforming growth factor-β and interleukin-6.
        J Cell Physiol. 1992; 150: 134-139
        • Koukoulis G.
        • Rayner A.
        • Tan K.C.
        • Williams R.
        • Portmann B.
        Immunolocalization of regenerating cells after submassive liver necrosis using PCNA staining.
        J Pathol. 1992; 166: 359-368
        • Kimura T.
        • Sakaida I.
        • Terai S.
        • Matsumura Y.
        • Uchida K.
        • Okita K.
        Inhibition of tumor necrosis factor-α production retards liver regeneration after partial hepatectomy in rats.
        Biochem Biophys Res Com. 1997; 231: 557-560
        • Higashitsuji H.
        • Arii S.
        • Furutani M.
        • Mise M.
        • Monden K.
        • Fujita S.
        • et al.
        Expression of cytokine genes during liver regeneration after partial hepatectomy in rats.
        J Surg Res. 1995; 58: 267-274
        • Schierwagen C.
        • Bylund-Fellenius A.C.
        • Lundberg C.
        Improved method for quantification of tissue PMN accumulation measured by myeloperoxidase activity.
        J Pharmacol Methods. 1990; 23: 179-186
        • Fujita J.
        • Marino M.W.
        • Wada H.
        • Jungbluth A.A.
        • Mackrell P.J.
        • Rivadeneira D.E.
        • et al.
        Effect of TNF gene depletion on liver regeneration after partial hepatectomy in mice.
        Surgery. 2001; 129: 48-54
        • Yachida S.
        • Kokudo Y.
        • Wakabayashi H.
        • Maeba T.
        • Kaneda K.
        • Maeta H.
        Morphological and functional alterations to sinusoidal endothelial cells in the early phase of endotoxin-induced liver failure after partial hepatectomy in rats.
        Virchows Arch. 1998; 433: 173-181
        • Ogata K.
        • Jin M.B.
        • Tanigchi M.
        • Suzuki T.
        • Shimamura T.
        • Kitagawa N.
        • et al.
        Attenuation of ischemia and reperfusion injury of canine livers by inhibition of type II phospholipase A2 with LY329722.
        Transplantation. 2001; 71: 1040-1046
        • Lentsch A.B.
        • Kato A.
        • Yoshidome H.
        • McMasters K.M.
        • Edward M.J.
        Inflammatory mechanisms and therapeutic strategies for warm hepatic ischemia/reperfusion injury.
        Hepatology. 2000; 32: 169-173
        • Jaeschke H.
        • Ho Y.S.
        • Fisher M.A.
        • Lawson J.A.
        • Farhood A.
        Glutathione peroxidase-deficient mice are more susceptible to neutrophils-mediated hepatic parenchymal cell injury during endotoxemia: importance of an intracellular oxidant stress.
        Hepatology. 1999; 29: 443-450
        • Fausto N.
        Liver regeneration: from laboratory to clinic.
        Liver Transplant. 2001; 7: 835-844
        • Luster M.I.
        • Simeonova P.P.
        • Gallucci R.
        • Matheson J.
        Tumor necrosis factor alpha and toxicology.
        Crit Rev Toxicol. 1999; 29: 491-511
        • Van Dullemen H.M.
        • van Deventer S.J.
        • Hommes D.W.
        • Bijl H.A.
        • Tytgat G.N.
        • Woody J.
        Treatment of Crohn's disease with anti-tumor necrosis factor chimeric monoclonal antibody (cA2).
        Gastroenterology. 1995; 109: 129-135