Advertisement
Original Communication| Volume 149, ISSUE 6, P783-791, June 2011

Specific expression of osteopontin and S100A6 in hepatocellular carcinoma

Published:February 11, 2011DOI:https://doi.org/10.1016/j.surg.2010.12.007

      Background

      Our aim was to identify differential expression of genes in hepatocellular carcinoma (HCC) with the ultimate goal of discovering novel diagnostic and therapeutic targets.

      Methods

      We examined differences in gene expression between HCC and noncancerous liver tissue using a cDNA array with probes for 15,843 genes/clones. Two genes, osteopontin (OPN) and S100A6, were found to be >10-fold differentially expressed, and were selected for further immunohistochemical staining in 51 HCC and 10 nonmalignant liver specimens. The relation between OPN and S100A6 alterations and various clinicopathologic parameters was also evaluated.

      Results

      We found a total of 219 genes that were differentially expressed >3-fold. Of these, 109 were upregulated and 110 downregulated. Within this group, 123 genes, including 59 upregulated and 64 downregulated, had been identified previously. These known genes were mainly involved in cell migration, cytoskeleton dynamics, the signaling pathway and cell cycle, and metabolism. OPN expression and S100A6 expression were seen in 26 of 51 (51.0 %) and 16 of 51 (31.4 %) HCC samples, respectively. More importantly, proteins coded by these genes were not found in any noncancerous liver specimen by immunohistochemical analysis. Expression of these genes correlated with poor differentiation (OPN: P = .013; S100A6: P = .008).

      Conclusion

      OPN, a secreted phosphoprotein that has been increasingly implicated in the progression and metastasis of cancer, and S100A6, a member of the S100 protein family that can perform cell proliferation, differentiation, migration, and cytoskeletal dynamics, may be promising diagnostic markers and therapeutic targets for HCC. In addition, the results encourage future studies involving the roles of these proteins in the development and progression of this cancer.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Surgery
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Parkin D.M.
        • Bray F.
        • Ferlay J.
        • Pisani P.
        Global cancer statistics.
        CA Cancer J Clin. 2002; 2005: 74-108
        • Schafer D.F.
        • Sorrell M.F.
        Hepatocellular carcinoma.
        Lancet. 1999; 353: 1253-1257
        • Yang B.H.
        • Xia J.L.
        • Huang L.W.
        • Tang Z.Y.
        • Chen M.S.
        • Li J.Q.
        • et al.
        [Changes of clinical aspect of primary liver cancer in China during the past 30 years—control study for 3,250 cases with primary liver cancer].
        Zhonghua Yi Xue Za Zhi. 2003; 83: 1053-1057
        • Roayaie S.
        • Frischer J.S.
        • Emre S.H.
        • Fishbein T.M.
        • Sheiner P.A.
        • Sung M.
        • et al.
        Long-term results with multimodal adjuvant therapy and liver transplantation for the treatment of hepatocellular carcinomas larger than 5 centimeters.
        Ann Surg. 2002; 235: 533-539
        • Sun H.C.
        • Tang Z.Y.
        Preventive treatments for recurrence after curative resection of hepatocellular carcinoma—a literature review of randomized control trials.
        World J Gastroenterol. 2003; 9: 635-640
        • Thorgeirsson S.S.
        Hunting for tumor suppressor genes in liver cancer.
        Hepatology. 2003; 37: 739-741
        • Feitelson M.A.
        • Sun B.
        • Satiroglu Tufan N.L.
        • Liu J.
        • Pan J.
        • Lian Z.
        Genetic mechanisms of hepatocarcinogenesis.
        Oncogene. 2002; 21: 2593-2604
        • Xu X.R.
        • Huang J.
        • Xu Z.G.
        • Qian B.Z.
        • Zhu Z.D.
        • Yan Q.
        • et al.
        Insight into hepatocellular carcinogenesis at transcriptome level by comparing gene expression profiles of hepatocellular carcinoma with those of corresponding noncancerous liver.
        Proc Natl Acad Sci U S A. 2001; 98: 15089-15094
        • Xiao S.Y.
        • Wang H.L.
        • Hart J.
        • Fleming D.
        • Beard M.R.
        cDNA arrays and immunohistochemistry identification of CD10/CALLA expression in hepatocellular carcinoma.
        Am J Pathol. 2001; 159: 1415-1421
        • Cheung S.T.
        • Chen X.
        • Guan X.Y.
        • Wong S.Y.
        • Tai L.S.
        • Ng I.O.
        • et al.
        Identify metastasis-associated genes in hepatocellular carcinoma through clonality delineation for multinodular tumor.
        Cancer Res. 2002; 62: 4711-4721
        • Hoshida Y.
        • Moriyama M.
        • Otsuka M.
        • Kato N.
        • Goto T.
        • Taniguchi H.
        • et al.
        Identification of genes associated with sensitivity to 5-fluorouracil and cisplatin in hepatoma cells.
        J Gastroenterol. 2002; 37: 92-95
        • Chuma M.
        • Sakamoto M.
        • Yamazaki K.
        • Ohta T.
        • Ohki M.
        • Asaka M.
        • et al.
        Expression profiling in multistage hepatocarcinogenesis: identification of HSP70 as a molecular marker of early hepatocellular carcinoma.
        Hepatology. 2003; 37: 198-207
        • Iizuka N.
        • Oka M.
        • Yamada-Okabe H.
        • Nishida M.
        • Maeda Y.
        • Mori N.
        • et al.
        Oligonucleotide microarray for prediction of early intrahepatic recurrence of hepatocellular carcinoma after curative resection.
        Lancet. 2003; 361: 923-929
        • Ye Q.H.
        • Qin L.X.
        • Forgues M.
        • He P.
        • Kim J.W.
        • Peng A.C.
        • et al.
        Predicting hepatitis B virus-positive metastatic hepatocellular carcinomas using gene expression profiling and supervised machine learning.
        Nat Med. 2003; 9: 416-423
        • Wilentz R.E.
        • Su G.H.
        • Dai J.L.
        • Sparks A.B.
        • Argani P.
        • Sohn T.A.
        • et al.
        Immunohistochemical labeling for dpc4 mirrors genetic status in pancreatic adenocarcinomas: a new marker of DPC4 inactivation.
        Am J Pathol. 2000; 156: 37-43
        • Tiniakos D.G.
        • Yu H.
        • Liapis H.
        Osteopontin expression in ovarian carcinomas and tumors of low malignant potential (LMP).
        Hum Pathol. 1998; 29: 1250-1254
        • Thalmann G.N.
        • Sikes R.A.
        • Devoll R.E.
        • Kiefer J.A.
        • Markwalder R.
        • Klima I.
        • et al.
        Osteopontin: possible role in prostate cancer progression.
        Clin Cancer Res. 1999; 5: 2271-2277
        • Koopmann J.
        • Fedarko N.S.
        • Jain A.
        • Maitra A.
        • Iacobuzio-Donahue C.
        • Rahman A.
        • et al.
        Evaluation of osteopontin as biomarker for pancreatic adenocarcinoma.
        Cancer Epidemiol Biomarkers Prev. 2004; 13: 487-491
        • Irby R.B.
        • McCarthy S.M.
        • Yeatman T.J.
        Osteopontin regulates multiple functions contributing to human colon cancer development and progression.
        Clin Exp Metastasis. 2004; 21: 515-523
        • Pan H.W.
        • Ou Y.H.
        • Peng S.Y.
        • Liu S.H.
        • Lai P.L.
        • Lee P.H.
        • et al.
        Overexpression of osteopontin is associated with intrahepatic metastasis, early recurrence, and poorer prognosis of surgically resected hepatocellular carcinoma.
        Cancer. 2003; 98: 119-127
        • Gotoh M.
        • Sakamoto M.
        • Kanetaka K.
        • Chuuma M.
        • Hirohashi S.
        Overexpression of osteopontin in hepatocellular carcinoma.
        Pathol Int. 2002; 52: 19-24
        • Xie H.
        • Song J.
        • Du R.
        • Liu K.
        • Wang J.
        • Tang H.
        • et al.
        Prognostic significance of osteopontin in hepatitis B virus-related hepatocellular carcinoma.
        Dig Liver Dis. 2007; 39: 167-172
        • Heizmann C.W.
        • Fritz G.
        • Schafer B.W.
        S100 proteins: structure, functions and pathology.
        Front Biosci. 2002; 7: d1356-d1368
        • Santamaria-Kisiel L.
        • Rintala-Dempsey A.C.
        • Shaw G.S.
        Calcium-dependent and -independent interactions of the S100 protein family.
        Biochem J. 2006; 396: 201-214
        • Emberley E.D.
        • Murphy L.C.
        • Watson P.H.
        S100 proteins and their influence on pro-survival pathways in cancer.
        Biochem Cell Biol. 2004; 82: 508-515
        • Yang Y.Q.
        • Zhang L.J.
        • Dong H.
        • Jiang C.L.
        • Zhu Z.G.
        • Wu J.X.
        • et al.
        Upregulated expression of S100A6 in human gastric cancer.
        J Dig Dis. 2007; 8: 186-193
        • Ito Y.
        • Yoshida H.
        • Tomoda C.
        • Uruno T.
        • Miya A.
        • Kobayashi K.
        • et al.
        Expression of S100A2 and S100A6 in thyroid carcinomas.
        Histopathology. 2005; 46: 569-575
        • Ohuchida K.
        • Mizumoto K.
        • Ishikawa N.
        • Fujii K.
        • Konomi H.
        • Nagai E.
        • et al.
        The role of S100A6 in pancreatic cancer development and its clinical implication as a diagnostic marker and therapeutic target.
        Clin Cancer Res. 2005; 11: 7785-7793
        • Komatsu K.
        • Andoh A.
        • Ishiguro S.
        • Suzuki N.
        • Hunai H.
        • Kobune-Fujiwara Y.
        • et al.
        Increased expression of S100A6 (Calcyclin), a calcium-binding protein of the S100 family, in human colorectal adenocarcinomas.
        Clin Cancer Res. 2000; 6: 172-177
        • Maelandsmo G.M.
        • Florenes V.A.
        • Mellingsaeter T.
        • Hovig E.
        • Kerbel R.S.
        • Fodstad O.
        Differential expression patterns of S100A2, S100A4 and S100A6 during progression of human malignant melanoma.
        Int J Cancer. 1997; 74: 464-469
        • Komatsu K.
        • Kobune-Fujiwara Y.
        • Andoh A.
        • Ishiguro S.
        • Hunai H.
        • Suzuki N.
        • et al.
        Increased expression of S100A6 at the invading fronts of the primary lesion and liver metastasis in patients with colorectal adenocarcinoma.
        Br J Cancer. 2000; 83: 769-774
        • Breen E.C.
        • Tang K.
        Calcyclin (S100A6) regulates pulmonary fibroblast proliferation, morphology, and cytoskeletal organization in vitro.
        J Cell Biochem. 2003; 88: 848-854
        • Nedjadi T.
        • Smith R.
        • Jenkins R.E.
        • Costello E.
        Involvement of S100A6 (CALCYCLIN) in pancreatic progression.
        Pancreas. 2007; 35: 419
        • Whiteman H.J.
        • Weeks M.E.
        • Dowen S.E.
        • Barry S.
        • Timms J.F.
        • Lemoine N.R.
        • et al.
        The role of S100P in the invasion of pancreatic cancer cells is mediated through cytoskeletal changes and regulation of cathepsin D.
        Cancer Res. 2007; 67: 8633-8642
        • Chambers A.F.
        • Hota C.
        • Prince C.W.
        Adhesion of metastatic, ras-transformed NIH 3T3 cells to osteopontin, fibronectin, and laminin.
        Cancer Res. 1993; 53: 701-706
        • Lee J.L.
        • Wang M.J.
        • Sudhir P.R.
        • Chen G.D.
        • Chi C.W.
        • Chen J.Y.
        Osteopontin promotes integrin activation through outside-in and inside-out mechanisms: OPN-CD44V interaction enhances survival in gastrointestinal cancer cells.
        Cancer Res. 2007; 67: 2089-2097
        • Rangaswami H.
        • Bulbule A.
        • Kundu G.C.
        Nuclear factor-inducing kinase plays a crucial role in osteopontin-induced MAPK/IkappaBalpha kinase-dependent nuclear factor kappaB-mediated promatrix metalloproteinase-9 activation.
        J Biol Chem. 2004; 279: 38921-38935
        • Das R.
        • Mahabeleshwar G.H.
        • Kundu G.C.
        Osteopontin stimulates cell motility and nuclear factor kappaB-mediated secretion of urokinase type plasminogen activator through phosphatidylinositol 3-kinase/Akt signaling pathways in breast cancer cells.
        J Biol Chem. 2003; 278: 28593-28606
        • Christensen B.
        • Kazanecki C.C.
        • Petersen T.E.
        • Rittling S.R.
        • Denhardt D.T.
        • Sorensen E.S.
        Cell type-specific post-translational modifications of mouse osteopontin are associated with different adhesive properties.
        J Biol Chem. 2007; 282: 19463-19472
        • Hsieh Y.H.
        • Juliana M.M.
        • Hicks P.H.
        • Feng G.
        • Elmets C.
        • Liaw L.
        • et al.
        Papilloma development is delayed in osteopontin-null mice: implicating an antiapoptosis role for osteopontin.
        Cancer Res. 2006; 66: 7119-7127
        • Cook A.C.
        • Chambers A.F.
        • Turley E.A.
        • Tuck A.B.
        Osteopontin induction of hyaluronan synthase 2 expression promotes breast cancer malignancy.
        J Biol Chem. 2006; 281: 24381-24389