Advertisement
Original Communication| Volume 154, ISSUE 3, P621-631, September 2013

Guanine nucleotide exchange factor-H1 signaling is involved in lipopolysaccharide-induced endothelial barrier dysfunction

      Background

      Gram-negative bacterial lipopolysaccharide (LPS) leads to the pathologic increase of vascular leakage under septic conditions. However, the mechanisms behind LPS-induced vascular hyperpermeability remain incompletely understood. In this study, we tested hypothesis that guanine nucleotide exchange factor-H1 (GEF-H1) signaling might be a key pathway involved in endothelial cells (ECs) barrier dysfunction.

      Methods

      The roles of GEF-H1 signaling pathway in LPS-induced ECs barrier dysfunction were accessed by Evans blue dye-labeled albumin (EB-albumin) leak across the human umbilical vein EC (HUVEC) monolayers and Western blot assays. Furthermore, the effect of GEF-H1 signaling on LPS-induced alteration of cytoskeletal proteins and disruption of cell–cell junctions were analyzed by immunofluorescent analysis and Western blot assays, respectively.

      Results

      We found that LPS could rapidly activated GEF-H1/RhoA/Rho-associated protein kinase (ROCK) signaling pathway in ECs. The LPS-mediated increase in EB-albumin flux across human HUVECs monolayers could be prevented by GEF-H1 depletion or ROCK inactivation. ECs permeability is controlled by actin filaments and cell–cell contact protein complexes. Actin stress fiber formation and/or cell–cell contact proteins loss cause vascular barrier disruption. Here, GEF-H1 knockdown or ROCK inactivation both not only significantly inhibited LPS-induced actin stress fiber formation, phosphorylation of myosin light chain, and myosin-associated phosphatase type 1, but also suppressed LPS-induced loss of occludin, claudin-1, and vascular endothelial (VE)-cadherin in ECs, which suggested that LPS-induced stress fiber formation and cell–cell junctions disruption were closely associated with GEF-H1/RhoA/ROCK signaling activation.

      Conclusion

      Our findings indicate that GEF-H1/RhoA/ROCK pathway in ECs plays an important role in LPS-mediated alteration of cell morphology and disruption of cell–cell junctions, consequently regulate LPS-induced vascular permeability dysfunction.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Surgery
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Wendel M.
        • Paul R.
        • Heller A.R.
        Lipoproteins in inflammation and sepsis. II. Clinical aspects.
        Intensive Care Med. 2007; 33: 25-35
        • Cook-Mills J.M.
        • Deem T.L.
        Active participation of endothelial cells in inflammation.
        J Leukocyte Biol. 2005; 77: 487-495
        • Aird W.C.
        The role of the endothelium in severe sepsis and multiple organ dysfunction syndrome.
        Blood. 2003; 101: 3765-3777
        • Dejana E.
        Endothelial cell-cell junctions: happy together.
        Nat Rev Mol Cell Biol. 2004; 5: 261-270
        • Birukova A.A.
        • Smurova K.
        • Birukov K.G.
        • Kaibuchi K.
        • Garcia J.G.
        • Verin A.D.
        Role of Rho GTPases in thrombin-induced lung vascular endothelial cells barrier dysfunction.
        Microvasc Res. 2004; 67: 64-77
        • Lee T.Y.
        • Gotlieb A.I.
        Microfilaments and microtubules maintain endothelial integrity.
        Microsc Res Tech. 2003; 60: 115-127
        • Lum H.
        • Malik A.B.
        Mechanisms of increased endothelial permeability.
        Can J Physiol Pharmacol. 1996; 74: 787-800
        • Wettschureck N.
        • Offermanns S.
        Rho/Rho-kinase mediated signaling in physiology and pathophysiology.
        J Mol Med. 2002; 80: 629-638
        • Dudek S.M.
        • Garcia J.G.
        Cytoskeletal regulation of pulmonary vascular permeability.
        J Appl Physiol. 2001; 91: 1487-1500
        • Kaneko-Kawano T.
        • Takasu F.
        • Naoki H.
        • Sakumura Y.
        • Ishii S.
        • Ueba T.
        • et al.
        Dynamic regulation of myosin light chain phosphorylation by Rho-kinase.
        PLoS One. 2012; 7: e39269
        • Hudson C.A.
        • Heesom K.J.
        • Lopez Bernal A.
        Phasic contractions of isolated human myometrium are associated with Rho-kinase (ROCK)-dependent phosphorylation of myosin phosphatase-targeting subunit (MYPT1).
        Mol Hum Reprod. 2012; 18: 265-279
        • Spindler V.
        • Schlegel N.
        • Waschke J.
        Role of GTPases in control of microvascular permeability.
        Cardiovasc Res. 2010; 87: 243-253
        • Wu X.
        • Guo R.
        • Chen P.
        • Wang Q.
        • Cunningham P.N.
        TNF induces caspase-dependent inflammation in renal endothelial cells through a Rho- and myosin light chain kinase-dependent mechanism.
        Am J Physiol Renal Physiol. 2009; 297: F316-F326
        • Umapathy N.S.
        • Zemskov E.A.
        • Gonzales J.
        • Gorshkov B.A.
        • Sridhar S.
        • Chakraborty T.
        • et al.
        Extracellular beta-nicotinamide adenine dinucleotide (beta-NAD) promotes the endothelial cell barrier integrity via PKA- and EPAC1/Rac1-dependent actin cytoskeleton rearrangement.
        J Cell Physiol. 2010; 223: 215-223
        • Bogatcheva N.V.
        • Zemskova M.A.
        • Poirier C.
        • Mirzapoiazova T.
        • Kolosova I.
        • Bresnick A.R.
        • et al.
        The suppression of myosin light chain (MLC) phosphorylation during the response to lipopolysaccharide (LPS): beneficial or detrimental to endothelial barrier?.
        J Cell Physiol. 2011; 226: 3132-3146
        • Beckers C.M.
        • van Hinsbergh V.W.
        • van Nieuw Amerongen G.P.
        Driving Rho GTPase activity in endothelial cells regulates barrier integrity.
        Thromb Haemost. 2010; 103: 40-55
        • Schlegel N.
        • Baumer Y.
        • Drenckhahn D.
        • Waschke J.
        Lipopolysaccharide-induced endothelial barrier breakdown is cyclic adenosine monophosphate dependent in vivo and in vitro.
        Crit Care Med. 2009; 37: 1735-1743
        • Peng X.
        • Hassoun P.M.
        • Sammani S.
        • McVerry B.J.
        • Burne M.J.
        • Rabb H.
        • et al.
        Protective effects of sphingosine 1-phosphate in murine endotoxin-induced inflammatory lung injury.
        Am J Respir Crit Care Med. 2004; 169: 1245-1251
        • Coimbra R.
        • Melbostad H.
        • Loomis W.
        • Porcides R.D.
        • Wolf P.
        • Tobar M.
        • et al.
        LPS-induced acute lung injury is attenuated by phosphodiesterase inhibition: effects on proinflammatory mediators, metalloproteinases, NF-kappaB, and ICAM-1 expression.
        J Trauma. 2006; 60: 115-125
        • Liu Y.
        • Ballman K.
        • Li D.
        • Khan S.
        • Derr-Yellin E.
        • Shou W.
        • et al.
        Impaired function of Fanconi anemia type C-deficient macrophages.
        J Leukocyte Biol. 2012; 91: 333-340
        • Sen P.
        • Gopalakrishnan R.
        • Kothari H.
        • Keshava S.
        • Clark C.A.
        • Esmon C.T.
        • et al.
        Factor VIIa bound to endothelial cell protein C receptor activates protease activated receptor-1 and mediates cell signaling and barrier protection.
        Blood. 2011; 117: 3199-3208
        • Zheng Y.
        Dbl family guanine nucleotide exchange factors.
        Trends Biochem Sci. 2001; 26: 724-732
        • Ren Y.
        • Li R.
        • Zheng Y.
        • Busch H.
        Cloning and characterization of GEF-H1, a microtubule-associated guanine nucleotide exchange factor for Rac and Rho GTPases.
        J Biol Chem. 1998; 273: 34954-34960
        • Krendel M.
        • Zenke F.T.
        • Bokoch G.M.
        Nucleotide exchange factor GEF-H1 mediates cross-talk between microtubules and the actin cytoskeleton.
        Nat Cell Biol. 2002; 4: 294-301
        • Chatterjee P.K.
        • Yeboah M.M.
        • Dowling O.
        • Xue X.
        • Powell S.R.
        • Al-Abed Y.
        • et al.
        Nicotinic acetylcholine receptor agonists attenuate septic acute kidney injury in mice by suppressing inflammation and proteasome activity.
        Plos One. 2012; 7: e35361
        • Isowa N.
        • Xavier A.M.
        • Dziak E.
        • Opas M.
        • McRitchie D.I.
        • Slutsky A.S.
        • et al.
        LPS-induced depolymerization of cytoskeleton and its role in TNF-alpha production by rat pneumocytes.
        Am J Physiol. 1999; 277: L606-L615
        • Isowa N.
        • Keshavjee S.H.
        • Liu M.
        Role of microtubules in LPS-induced macrophage inflammatory protein-2 production from rat pneumocytes.
        Am J Physiol Lung Cell Mol Physiol. 2000; 279: L1075-L1082
        • Birukova A.A.
        • Birukov K.G.
        • Smurova K.
        • Adyshev D.
        • Kaibuchi K.
        • Alieva I.
        • et al.
        Novel role of microtubules in thrombin-induced endothelial barrier dysfunction.
        FASEB J. 2004; 18: 1879-1890
        • Xu S.Q.
        • Mahadev K.
        • Wu X.
        • Fuchsel L.
        • Donnelly S.
        • Scalia R.G.
        • et al.
        Adiponectin protects against angiotensin II or tumor necrosis factor alpha-induced endothelial cell monolayer hyperpermeability: role of cAMP/PKA signaling.
        Arterioscler Thromb Vasc Biol. 2008; 28: 899-905
        • Guo F.
        • Zhou Z.
        • Dou Y.
        • Tang J.
        • Gao C.
        • Huan J.
        GEF-H1/RhoA signalling pathway mediates lipopolysaccharide-induced intercellular adhesion molecular-1 expression in endothelial cells via activation of p38 and NF-kappaB.
        Cytokine. 2012; 57: 417-428
        • Shelton J.L.
        • Wang L.
        • Cepinskas G.
        • Sandig M.
        • Inculet R.
        • McCormack D.G.
        • et al.
        Albumin leak across human pulmonary microvascular vs. umbilical vein endothelial cells under septic conditions.
        Microvasc Res. 2006; 71: 40-47
        • Guo F.
        • Tang J.
        • Zhou Z.
        • Dou Y.
        • Van Lonkhuyzen D.
        • Gao C.
        • et al.
        GEF-H1-RhoA signaling pathway mediates LPS-induced NF-κB transactivation and IL-8 synthesis in endothelial cells.
        Mol Immunol. 2012; 50: 98-107
        • Guo F.
        • Xing Y.
        • Zhou Z.
        • Dou Y.
        • Tang J.
        • Gao C.
        • et al.
        Guanine-nucleotide exchange factor H1 mediates lipopolysaccharide-induced interleukin 6 and tumor necrosis factor alpha expression in endothelial cells via activation of nuclear factor kappaB.
        Shock. 2012; 37: 531-538
        • Mali R.S.
        • Ramdas B.
        • Ma P.
        • Shi J.
        • Munugalavadla V.
        • Sims E.
        • et al.
        Rho kinase regulates the survival and transformation of cells bearing oncogenic forms of KIT, FLT3, and BCR-ABL.
        Cancer Cell. 2011; 20: 357-369
        • Bae J.S.
        • Rezaie A.R.
        Activated protein C inhibits high mobility group box 1 signaling in endothelial cells.
        Blood. 2011; 118: 3952-3959
        • Bae J.W.
        • Bae J.S.
        Barrier protective effects of lycopene in human endothelial cells.
        Inflamm Res. 2011; 60: 751-758
        • Tasaka S.
        • Koh H.
        • Yamada W.
        • Shimizu M.
        • Ogawa Y.
        • Hasegawa N.
        • et al.
        Attenuation of endotoxin-induced acute lung injury by the Rho-associated kinase inhibitor, Y-27632.
        Am J Respir Cell Mol Biol. 2005; 32: 504-510
        • Wojciak-Stothard B.
        • Ridley A.J.
        Rho GTPases and the regulation of endothelial permeability.
        Vasc Pharmacol. 2002; 39: 187-199
        • Kawano Y.
        • Fukata Y.
        • Oshiro N.
        • Amano M.
        • Nakamura T.
        • Ito M.
        • et al.
        Phosphorylation of myosin-binding subunit (MBS) of myosin phosphatase by Rho-kinase in vivo.
        J Cell Biol. 1999; 147: 1023-1038
        • Eutamene H.
        • Theodorou V.
        • Schmidlin F.
        • Tondereau V.
        • Garcia-Villar R.
        • Salvador-Cartier C.
        • et al.
        LPS-induced lung inflammation is linked to increased epithelial permeability: role of MLCK.
        Eur Respir J. 2005; 25: 789-796
        • McKenzie J.A.
        • Ridley A.J.
        Roles of Rho/ROCK and MLCK in TNF-alpha-induced changes in endothelial morphology and permeability.
        J Cell Physiol. 2007; 213: 221-228
        • Furuse M.
        • Sasaki H.
        • Fujimoto K.
        • Tsukita S.
        A single gene product, claudin-1 or -2, reconstitutes tight junction strands and recruits occludin in fibroblasts.
        J Cell Biol. 1998; 143: 391-401
        • Gustot T.
        Multiple organ failure in sepsis: prognosis and role of systemic inflammatory response.
        Curr Opin Crit Care. 2011; 17: 153-159
        • Braga V.M.
        Cell-cell adhesion and signalling.
        Curr Opin Cell Biol. 2002; 14: 546-556
        • Essler M.
        • Staddon J.M.
        • Weber P.C.
        • Aepfelbacher M.
        Cyclic AMP blocks bacterial lipopolysaccharide-induced myosin light chain phosphorylation in endothelial cells through inhibition of Rho/Rho kinase signaling.
        J Immunol. 2000; 164: 6543-6549
        • Birukova A.A.
        • Adyshev D.
        • Gorshkov B.
        • Bokoch G.M.
        • Birukov K.G.
        • Verin A.D.
        GEF-H1 is involved in agonist-induced human pulmonary endothelial barrier dysfunction.
        Am J Physiol Lung Cell Mol Physiol. 2006; 290: L540-L548
        • Xing J.
        • Birukova A.A.
        ANP attenuates inflammatory signaling and Rho pathway of lung endothelial permeability induced by LPS and TNFalpha.
        Microvasc Res. 2010; 79: 56-62
        • Birukova A.A.
        • Fu P.
        • Xing J.
        • Yakubov B.
        • Cokic I.
        • Birukov K.G.
        Mechanotransduction by GEF-H1 as a novel mechanism of ventilator-induced vascular endothelial permeability.
        Am J Physiol Lung Cell Mol Physiol. 2010; 298: L837-L848
        • Michel C.C.
        • Curry F.E.
        Microvascular permeability.
        Physiol Rev. 1999; 79: 703-761
        • Adamson R.H.
        • Curry F.E.
        • Adamson G.
        • Liu B.
        • Jiang Y.
        • Aktories K.
        • et al.
        Rho and rho kinase modulation of barrier properties: cultured endothelial cells and intact microvessels of rats and mice.
        J Physiol. 2002; 539: 295-308
        • Bogatcheva N.V.
        • Verin A.D.
        The role of cytoskeleton in the regulation of vascular endothelial barrier function.
        Microvasc Res. 2008; 76: 202-207
        • Gavard J.
        • Gutkind J.S.
        Protein kinase C-related kinase and ROCK are required for thrombin-induced endothelial cell permeability downstream from Galpha12/13 and Galpha11/q.
        J Biol Chem. 2008; 283: 29888-29896
        • Chang Y.C.
        • Nalbant P.
        • Birkenfeld J.
        • Chang Z.F.
        • Bokoch G.M.
        GEF-H1 couples nocodazole-induced microtubule disassembly to cell contractility via RhoA.
        Mol Biol Cell. 2008; 19: 2147-2153
        • Matsuzawa T.
        • Kuwae A.
        • Yoshida S.
        • Sasakawa C.
        • Abe A.
        Enteropathogenic Escherichia coli activates the RhoA signaling pathway via the stimulation of GEF-H1.
        EMBO J. 2004; 23: 3570-3582
        • Mirzapoiazova T.
        • Kolosova I.A.
        • Moreno L.
        • Sammani S.
        • Garcia J.G.
        • Verin A.D.
        Suppression of endotoxin-induced inflammation by taxol.
        Eur Respir J. 2007; 30: 429-435
        • Bazzoni G.
        • Dejana E.
        Endothelial cell-to-cell junctions: molecular organization and role in vascular homeostasis.
        Physiol Rev. 2004; 84: 869-901
        • Popoff M.R.
        • Geny B.
        Multifaceted role of Rho, Rac, Cdc42 and Ras in intercellular junctions, lessons from toxins.
        Biochim Biophys Acta. 2009; 1788: 797-812
        • Terry S.
        • Nie M.
        • Matter K.
        • Balda M.S.
        Rho signaling and tight junction functions.
        Physiology. 2010; 25: 16-26
        • Ivanov A.I.
        • McCall I.C.
        • Babbin B.
        • Samarin S.N.
        • Nusrat A.
        • Parkos C.A.
        Microtubules regulate disassembly of epithelial apical junctions.
        BMC Cell Biol. 2006; 7: 12