Society of University Surgeons| Volume 154, ISSUE 3, P521-527, September 2013

Poor outcome in bacterial peritonitis is associated with dysregulated microRNAs and an increased inflammatory response


      Peritonitis is a common cause of surgical sepsis. The failure of the host to mount an appropriate immune response contributes to persistence of the infection. We investigated the role microRNAs may play in this failed immune response.


      Klebsiella pneumoniae was injected intraperitoneally in mice. Weight loss was used to predict clinical outcome. Peritoneal exudate cells (PECs) and supernatant were collected. RNA from PECs was run on screening microRNA array cards to determine gene expression, and validated by single assay analysis. Cytokine levels in supernatant were assayed by enzyme-linked immunosorbent assay.


      Despite similar bacterial levels, PEC counts were higher in the predicted death group. The predicted deaths had higher levels of proinflammatory tumor necrosis factor-α/IL-6 and significantly lower levels of interleukin-10. MiR-221 was up-regulated in both the predicted death and predicted survivor groups. Five miRNAs were up-regulated in the predicted survivor group compared with normal controls.


      Higher PEC counts and proinflammatory cytokines in the predicted death group indicates an exaggerated inflammatory response, with lower IL-10 levels despite similar bacterial counts. There were two dysregulated miRNAs with transcriptional targets that may explain our results. A more balanced immune response with an appropriate counter inflammatory response may be important for improving survival.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Surgery
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Remick D.G.
        • Bolgos G.
        • Copeland S.
        • Siddiqui J.
        Role of interleukin-6 in mortality from and physiologic response to sepsis.
        Infect Immunity. 2005; 73: 2751-2757
        • Weiss G.
        • Meyer F.
        • Lippert H.
        Infectiological diagnostic problems in tertiary peritonitis.
        Langenbeck Arch Surg. 2006; 391: 473-482
        • Nathens A.B.
        • Rotstein O.D.
        • Marshall J.C.
        Tertiary peritonitis: clinical features of a complex nosocomial infection.
        World J Surg. 1998; 22: 158-163
        • de Ruiter J.
        • Weel J.
        • Manusama E.
        • Kingma W.P.
        • van der Voort P.H.
        The epidemiology of intra-abdominal flora in critically ill patients with secondary and tertiary abdominal sepsis.
        Infection. 2009; 37: 522-527
        • Chromik A.M.
        • Meiser A.
        • Holling J.
        • Sulberg D.
        • Daigeler A.
        • Meurer K.
        • et al.
        Identification of patients at risk for development of tertiary peritonitis on a surgical intensive care unit.
        J Gastrointest Surg. 2009; 13: 1358-1367
        • Lenz A.M.
        • Qadan M.
        • Gardner S.A.
        • Cheadle W.G.
        Impact of microbial tolerance in persistent secondary Klebsiella pneumoniae peritonitis.
        Cytokine. 2011; 53: 84-93
        • Lenz A.M.
        • Turina M.
        • Alard P.
        • Gardner S.A.
        • Cheadle W.G.
        Microbial tolerance in secondary peritonitis is dose dependent.
        Cell Immunol. 2009; 258: 98-106
        • Lenz A.M.
        • Franklin G.A.
        • Fairweather M.
        • McClintock M.L.
        • Jala V.R.
        • Peyton J.C.
        • et al.
        Endogenous IL-10 leads to impaired bacterial clearance and reduced survival in a murine model of chronic peritonitis.
        Cytokine. 2007; 40: 207-215
        • Billeter A.T.
        • Druen D.
        • Kanaan Z.M.
        • Polk Jr., H.C.
        MicroRNAs: new helpers for surgeons?.
        Surgery. 2012; 151: 1-5
        • Zhang Y.
        • Li Y.
        Regulation of innate receptor pathways by microRNAs.
        Sci China Life Sci. 2013; 56: 13-18
        • Sheedy F.J.
        • Palsson-McDermott E.
        • Hennessy E.J.
        • Martin C.
        • O'Leary J.J.
        • Ruan Q.
        • et al.
        Negative regulation of TLR4 via targeting of the proinflammatory tumor suppressor PDCD4 by the microRNA miR-21.
        Nat Immunol. 2010; 11: 141-147
        • Kanaan Z.
        • Gardner S.
        • Carruba C.
        • Mattingly J.
        • Druen D.
        • Cheadle W.G.
        Macrophage genetic reprogramming during chronic peritonitis is augmented by LPS pretreatment.
        J Surg Res. 2012; 175: 289-297
        • Xiao W.
        • Mindrinos M.N.
        • Seok J.
        • Cuschieri J.
        • Cuenca A.G.
        • Gao H.
        • et al.
        A genomic storm in critically injured humans.
        J Exp Med. 2011; 208: 2581-2590
        • Quinn S.R.
        • O'Neill L.A.
        A trio of microRNAs that control Toll-like receptor signalling.
        Int Immunol. 2011; 23: 421-425
        • Starczynowski D.T.
        • Kuchenbauer F.
        • Argiropoulos B.
        • Sung S.
        • Morin R.
        • Muranyi A.
        • et al.
        Identification of miR-145 and miR-146a as mediators of the 5q- syndrome phenotype.
        Nat Med. 2010; 16: 49-58
        • O'Connell R.M.
        • Chaudhuri A.A.
        • Rao D.S.
        • Baltimore D.
        Inositol phosphatase SHIP1 is a primary target of miR-155.
        Proc Natl Acad Sci USA. 2009; 106: 7113-7118
        • Kanaan Z.
        • Barnett R.
        • Gardner S.
        • Keskey B.
        • Druen D.
        • Billeter A.
        • et al.
        Differential microRNA (miRNA) expression could explain microbial tolerance in a novel chronic peritonitis model.
        Innate Immunity. 2013; 19: 203-212
        • Krishnamoorthy S.
        • Recchiuti A.
        • Chiang N.
        • Fredman G.
        • Serhan C.N.
        Resolvin D1 receptor stereoselectivity and regulation of inflammation and proresolving microRNAs.
        Am J Pathol. 2012; 180: 2018-2027
        • Recchiuti A.
        • Krishnamoorthy S.
        • Fredman G.
        • Chiang N.
        • Serhan C.N.
        MicroRNAs in resolution of acute inflammation: identification of novel resolvin D1-miRNA circuits.
        FASEB J. 2011; 25: 544-560
        • Remick D.G.
        • Bolgos G.R.
        • Siddiqui J.
        • Shin J.
        • Nemzek J.A.
        Six at six: interleukin-6 measured 6 h after the initiation of sepsis predicts mortality over 3 days.
        Shock. 2002; 17: 463-467
        • Badiu D.C.
        • Paunescu V.
        • Aungurenci A.
        • Pasarica D.
        Proinflammatory cytokines in peritonitis.
        J Med Life. 2011; 4: 158-162
        • Howard M.
        • Muchamuel T.
        • Andrade S.
        • Menon S.
        Interleukin 10 protects mice from lethal endotoxemia.
        J Exp Med. 1993; 177: 1205-1208
        • van der Poll T.
        • Marchant A.
        • Buurman W.A.
        • Berman L.
        • Keogh C.V.
        • Lazarus D.D.
        • et al.
        Endogenous IL-10 protects mice from death during septic peritonitis.
        J Immunol. 1995; 155: 5397-5401
        • Mycko M.P.
        • Cichalewska M.
        • Machlanska A.
        • Cwiklinska H.
        • Mariasiewicz M.
        • Selmaj K.W.
        MicroRNA-301a regulation of a T-helper 17 immune response controls autoimmune demyelination.
        Proc Natl Acad Sci USA. 2012; 109: E1248-E1257
        • Wang H.
        • Zhang P.
        • Chen W.
        • Feng D.
        • Jia Y.
        • Xie L.
        Serum microRNA signatures identified by Solexa sequencing predict sepsis patients' mortality: a prospective observational study.
        PloS One. 2012; 7: e38885