Advertisement
Infection| Volume 157, ISSUE 1, P96-103, January 2015

Phage tail-like particles kill Clostridium difficile and represent an alternative to conventional antibiotics

      Background

      Current Clostridium difficile infection (CDI) antibiotic regimens have become increasingly ineffective at achieving cure and preventing recurrence. A recently developed alternative to conventional antibiotics are phage tail-like particles (PTLPs), which are proteins that are morphologically similar to bacteriophages and are produced by C difficile. This study examines the in vitro killing spectrum of a previously unreported PTLP isolated from a clinical isolate of C difficile.

      Methods

      Using patient-derived samples from an institutional review board-approved C difficile tissue bank, a ribotype 078 C difficile isolate was anaerobically incubated on blood agar plates that were preswabbed with norfloxacin to induce the production of PTLPs. Concentrated PTLP populations were confirmed using transmission electron microscopy. Using a standard lawn spot approach, bactericidal activity was assessed as indicated by a clearing within the bacterial lawn. The PTLP genomic cluster was also fully sequenced and open reading frames were annotated according to predicted function.

      Results

      PTLPs were assessed using 64 patient-derived C difficile isolates of varying ribotypes. PTLPs demonstrated complete bactericidal activity in 21 of 25 ribotype 027 isolates with partial activity in 2 of the 25. Complete bactericidal activity was not demonstrated against any other ribotype or non-difficile bacteria, suggesting a species and ribotype specificity. Functional genes, which may be necessary for killing, were identified within the PTLP genetic locus.

      Conclusion

      PTLPs demonstrate capability in eradicating C difficile in vitro, and with further development, may represent an organism-specific, microbiome-sparing therapy for CDI.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Surgery
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Surawicz C.M.
        • Brandt L.J.
        • Binion D.G.
        • Ananthakrishnan A.N.
        • Curry S.R.
        • Gilligan P.H.
        • et al.
        Guidelines for diagnosis, treatment, and prevention of Clostridium difficile infections.
        Am J Gastroenterol. 2013; 108: 478-498
        • Aslam S.
        • Hamill R.J.
        • Musher D.M.
        Treatment of Clostridium difficile-associated disease: old therapies and new strategies.
        Lancet Infect Dis. 2005; 5: 549-557
        • McFarland L.V.
        • Elmer G.W.
        • Surawicz C.M.
        Breaking the cycle: treatment strategies for 163 cases of recurrent Clostridium difficile disease.
        Am J Gastroenterol. 2002; 97: 1769-1775
        • Antonopoulos D.A.
        • Huse S.M.
        • Morrison H.G.
        • Schmidt T.M.
        • Sogin M.L.
        • Young V.B.
        Reproducible community dynamics of the gastrointestinal microbiota following antibiotic perturbation.
        Infect Immun. 2009; 77: 2367-2375
        • Robinson C.J.
        • Young V.B.
        Antibiotic administration alters the community structure of the gastrointestinal micobiota.
        Gut Microbes. 2010; 1: 279-284
        • Kassam Z.
        • Lee C.H.
        • Yuan Y.
        • Hunt R.H.
        Fecal microbiota transplantation for Clostridium difficile infection: systematic review and meta-analysis.
        Am J Gastroenterol. 2013; 108: 500-508
        • Scholl D.
        • Martin Jr., D.W.
        Antibacterial efficacy of R-type pyocins towards Pseudomonas aeruginosa in a murine peritonitis model.
        Antimicrob Agents Chemother. 2008; 52: 1647-1652
        • Scholl D.
        • Cooley M.
        • Williams S.R.
        • Gebhart D.
        • Martin D.
        • Bates A.
        • et al.
        An engineered R-type pyocin is a highly specific and sensitive bactericidal agent for the food-borne pathogen Escherichia coli O157:H7.
        Antimicrob Agents Chemother. 2009; 53: 3074-3080
        • Nakayama K.
        • Takashima K.
        • Ishihara H.
        • Shinomiya T.
        • Kageyama M.
        • Kanaya S.
        • et al.
        The R-type pyocin of Pseudomonas aeruginosa is related to P2 phage, and the F-type is related to lambda phage.
        Mol Microbiol. 2000; 38: 213-231
        • Asadulghani M.
        • Ogura Y.
        • Ooka T.
        • Itoh T.
        • Sawaguchi A.
        • Iguchi A.
        • et al.
        The defective prophage pool of Escherichia coli O157: prophage-prophage interactions potentiate horizontal transfer of virulence determinants.
        PLoS Pathog. 2009; 5: e1000408
        • Kohler T.
        • Donner V.
        • van Delden C.
        Lipopolysaccharide as Shield and Receptor for R-Pyocin-Mediated Killing in Pseudomonas aeruginosa.
        J Bacteriol. 2010; 192: 1921-1928
        • Brouwer M.S.
        • Roberts A.P.
        • Hussain H.
        • Williams R.J.
        • Allan E.
        • Mullany P.
        Horizontal gene transfer converts non-toxigenic Clostridium difficile strains into toxin producers.
        Nat Commun. 2013; 4: 2601
        • Fortier L.C.
        • Moineau S.
        Morphological and genetic diversity of temperate phages in Clostridium difficile.
        Appl Environ Microbiol. 2007; 73: 7358-7366
        • Nale J.Y.
        • Shan J.
        • Hickenbotham P.T.
        • Fawley W.N.
        • Wilcox M.H.
        • Clokie M.R.
        Diverse Temperate Bacteriophage Carriage in Clostridium difficile 027 Strains.
        PLoS One. 2012; 7: e37263
        • Gebhart D.
        • Williams S.R.
        • Bishop-Lilly K.A.
        • Govoni G.R.
        • Willner K.M.
        • Butani A.
        • et al.
        Novel high-molecular-weight, R-type bacteriocins of Clostridium difficile.
        J Bacteriol. 2012; 194: 6240-6247
        • Shan J.
        • Patel K.V.
        • Hickenbotham P.T.
        • Nale J.Y.
        • Hargreaves K.R.
        • Clokie M.R.
        Prophage carriage and diversity within clinically relevant strains of Clostridium difficile.
        Appl Environ Microbiol. 2012; 78: 6027-6034
        • Seldin L.
        • Penido E.G.
        Production of a bacteriophage, a phage tail-like bacteriocin and an antibiotic by Bacillus azotofixans.
        An Acad Bras Cienc. 1990; 62: 85-94
        • Zink R.
        • Loessner M.J.
        • Scherer S.
        Characterization of cryptic prophages (monocins) in Listeria and sequence analysis of a holin/endolysin gene.
        Microbiology. 1995; 141: 2577-2584
        • Smarda J.
        • Benada O.
        Phage tail-like (high-molecular-weight) bacteriocins of Budvicia aquatica and Pragia fontium (Enterobacteriaceae).
        Appl Environ Microbiol. 2005; 71: 8970-8973
        • Strauch E.
        • Kaspar H.
        • Schaudinn C.
        • Dersch P.
        • Madela K.
        • Gewinner C.
        • et al.
        Characterization of enterocoliticin, a phage tail-like bacteriocin, and its effect on pathogenic Yersinia enterocolitica strains.
        Appl Environ Microbiol. 2001; 67: 5634-5642
        • Denayer S.
        • Matthijs S.
        • Cornelis P.
        Pyocin S2 (Sa) kills Pseudomonas aeruginosa strains via the FpvA type I ferripyoverdine receptor.
        J Bacteriol. 2007; 189: 7663-7668
        • Michel-Briand Y.
        • Baysse C.
        The pyocins of Pseudomonas aeruginosa.
        Biochimie. 2002; 84: 499-510
        • Echols H.
        Developmental pathways for the temperate phage: lysis vs lysogeny.
        Annu Rev Genet. 1972; 6: 157-190
        • Warny M.
        • Pepin J.
        • Fang A.
        • Killgore G.
        • Thompson A.
        • Brazier J.
        • et al.
        Toxin production by an emerging strain of Clostridium difficile associated with outbreaks of severe disease in North America and Europe.
        Lancet. 2005; 366: 1079-1084
        • Guarner F.
        • Malagelada J.R.
        Gut flora in health and disease.
        Lancet. 2003; 361: 512-519
        • Williams S.R.
        • Gebhart D.
        • Martin D.W.
        • Scholl D.
        Retargeting R-type pyocins to generate novel bactericidal protein complexes.
        Appl Environ Microbiol. 2008; 74: 3868-3876
        • Desvaux M.
        • Dumas E.
        • Chafsey I.
        • Hebraud M.
        Protein cell surface display in Gram-positive bacteria: from single protein to macromolecular protein structure.
        FEMS Microbiol Lett. 2006; 256: 1-15
        • Zou Y.
        • Hou C.
        Systematic analysis of an amidase domain CHAP in 12 Staphylococcus aureus genomes and 44 staphylococcal phage genomes.
        Comput Biol Chem. 2010; 34: 251-257
        • Loessner M.J.
        • Kramer K.
        • Ebel F.
        • Scherer S.
        C-terminal domains of Listeria monocytogenes bacteriophage murein hydrolases determine specific recognition and high-affinity binding to bacterial cell wall carbohydrates.
        Mol Microbiol. 2002; 44: 335-349