Advertisement

Neurologic foundations of spinal cord fusion (GEMINI)

      Cephalosomatic anastomosis has been carried out in both monkeys and mice with preservation of brain function. Nonetheless the spinal cord was not reconstructed, leaving the animals unable to move voluntarily. Here we review the details of the GEMINI spinal cord fusion protocol, which aims at restoring electrophysiologic conduction across an acutely transected spinal cord. The existence of the cortico-truncoreticulo-propriospinal pathway, a little-known anatomic entity, is described, and its importance concerning spinal cord fusion emphasized. The use of fusogens and electrical stimulation as adjuvants for nerve fusion is addressed. The possibility of achieving cephalosomatic anastomosis in humans has become reality in principle.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Surgery
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • White R.J.
        • Albin M.S.
        • Verdura J.
        • et al.
        The isolation and transplantation of the brain. An historical perspective emphasizing the surgical solutions to the design of these classical models.
        Neurol Res. 1996; 18: 194-203
        • Ren X.P.
        • Ye Y.J.
        • Li P.W.
        • Shen Z.L.
        • Han K.C.
        • Song Y.
        Head transplantation in mouse model.
        CNS Neurosci Ther. 2015; 21: 615-618
        • Canavero S.
        HEAVEN: The head anastomosis venture project outline for the first human head transplantation with spinal linkage (GEMINI).
        Surg Neurol Int. 2013; 4: S335-S342
        • Canavero S.
        The “GEMINI” spinal cord fusion protocol:.
        Reloaded. Surg Neurol Int. 2015; 6: 18
        • Goldsmith H.S.
        • Fonseca Jr., A.
        • Porter J.
        Spinal cord separation: MRI evidence of healing after omentum-collagen reconstruction.
        Neurol Res. 2005; 27: 115-123
        • Tabakow P.
        • Raisman G.
        • Fortuna W.
        • et al.
        Functional regeneration of supraspinal connections in a patient with transected spinal cord following transplantation of bulbar olfactory ensheathing cells with peripheral nerve bridging.
        Cell Transplant. 2014; 23: 1631-1655
        • Stewart F.T.
        • Harte R.H.
        A case of severed spinal cord in which myelorrhaphy was followed by partial return of function.
        Philadelphia Med J. 1902; 9: 1016-1020
        • Sledge J.
        • Graham W.A.
        • Westmoreland S.
        • Sejdic E.
        • Miller A.
        • Hoggatt A.
        • et al.
        Spinal cord injury models in non human primates: Are lesions created by sharp instruments relevant to human injuries?.
        Med Hypotheses. 2013; 81: 747-748
        • Freeman L.W.
        Observation on the regeneration of spinal axons in mammals. Proceedings, X Congreso Latinoamericano de Neurochirurgia.
        Editorial Don Bosco. 1963; : 135-144
        • Illis L.S.
        Central nervous system regeneration does not occur.
        Spinal Cord. 2012; 50: 259-263
        • Lawrence D.G.
        • Kuypers H.G.
        The functional organization of the motor system in the monkey: I. The effects of bilateral pyramidal lesions.
        Brain. 1968; 91: 1-14
        • Lawrence D.G.
        • Kuypers H.G.
        The functional organization of the motor system in the monkey: II. The effects of lesions of the descending brain-stem pathways.
        Brain. 1968; 91: 15-36
        • Jane J.A.
        • Yashon D.
        • Becker D.P.
        • Beatty R.
        • Sugar O.
        The effect of destruction of the corticospinal tract in the human cerebral peduncle upon motor function and involuntary movements. Report of 11 cases.
        J Neurosurg. 1968; 29: 581-585
        • Putnam T.J.
        Treatment of unilateral paralysis agitans by section of the lateral pyramidal tract.
        Arch Neurol Psychiatry. 1940; 44: 950-976
        • Bucy P.C.
        • Keplinger J.E.
        Section of the cerebral peduncles.
        Trans Am Neurol Assoc. 1960; 85: 65-66
        • Baker S.N.
        • Zaaimi B.
        • Fisher K.M.
        • et al.
        Pathways mediating functional recovery.
        Progr Brain Res. 2015; 218: 389-412
        • Laruelle L.
        La structure de la moelle epinière en coupes longitudinales.
        Rev Neurol. 1937; 67: 697-711
        • Nathan P.W.
        • Smith M.C.
        Fasciculi proprii of the spinal cord in man.
        Brain. 1959; 82: 610-668
        • Nathan P.W.
        • Smith M.
        • Deacon P.
        Vestibulospinal, reticulospinal and descending propriospinal nerve fibres in man.
        Brain. 1996; 119: 1809-1833
        • Lloyd D.P.C.
        Activity in neurons of the bulbospinal correlation system.
        J Neurophysiol. 1941; 4: 115-134
        • Lloyd D.P.C.
        Mediation of descending long spinal reflex activity.
        J Neurophysiol. 1942; 5: 435-458
        • Flynn J.R.
        • Graham B.A.
        • Galea M.P.
        • Callister R.J.
        The role of propriospinal interneurons in recovery from spinal cord injury.
        Neuropharmacology. 2011; 60: 809-822
        • Bareyre F.M.
        • Kerschensteiner M.
        • Raineteau O.
        • Mettnleiter T.C.
        • Weinmann O.
        • Schwab M.E.
        The injured spinal cord spontaneously forms a new intraspinal circuit in adult rats.
        Nat Neurosci. 2004; 7: 269-277
        • Bucy P.C.
        • Keplinger J.E.
        • Siqueira E.B.
        Destruction of the “pyramidal tract” in man.
        J Neurosurg. 1964; 21: 285-298
        • Jane J.A.
        • Evans J.P.
        • Fisher L.E.
        An investigation concerning the restitution of motor function following injury to the spinal cord.
        J Neurosurg. 1964; 21: 167-171
        • Fouad K.
        • Pedersen V.
        • Schwab M.E.
        • Brösamle C.
        Cervical sprouting of corticospinal fibers after thoracic spinal cord injury accompanies shifts in evoked motor responses.
        Curr Biol. 2001; 11: 1766-1770
        • Courtine G.
        • Song B.
        • Roy R.R.
        • et al.
        Recovery of supraspinal control of stepping via indirect propriospinal relay connections after spinal cord injury.
        Nat Med. 2008; 14: 69-74
        • Cowley K.C.
        • Zaporozhets E.
        • Schmidt B.J.
        Propriospinal neurons are sufficient for bulbospinal transmission of the locomotor command signal in the neonatal rat spinal cord.
        J Physiol. 2008; 586: 1623-1635
        • Han Q.
        • Cao C.
        • Ding Y.
        • et al.
        Plasticity of motor network and function in the absence of corticospinal projection.
        Exp Neurol. 2015; 267: 194-208
        • Sasaki S.
        • Isa T.
        • Pettersson L.G.
        • et al.
        Dexterous finger movements in primate without monosynaptic corticomoto-neuronal excitation.
        J Neurophysiol. 2004; 92: 3142-3147
        • Alstermark B.
        • Pettersson L.G.
        • Nishimura Y.
        • et al.
        Motor command for precision grip in the macaque monkey can be mediated by spinal interneurons.
        J Neurophysiol. 2011; 106: 12-16
        • Alstermark B.
        • Isa T.
        Circuits for skilled reaching and grasping.
        Annu Rev Neurosci. 2012; 35: 559-578
        • Jang S.H.
        • Chang C.H.
        • Lee J.
        • et al.
        Functional role of the corticoreticular pathway in chronic stroke patients.
        Stroke. 2013; 44: 1099-1104
        • Choe A.S.
        • Belegu V.
        • Yoshida S.
        • et al.
        Extensive neurological recovery from a complete spinal cord injury: A case report and hypothesis on the role of cortical plasticity.
        Front Hum Neurosci. 2013; 7: 290
        • Schlaeger R.
        • Papinutto N.
        • Panara V.
        Spinal cord gray matter atrophy correlates with multiple sclerosis disability.
        Ann Neurol. 2014; 76: 568-580
        • Kearney H.
        • Schneider T.
        • Yiannakas M.C.
        • et al.
        Spinal cord grey matter abnormalities are associated with secondary progression and physical disability in multiple sclerosis.
        J Neurol Neurosurg Psych. 2015; 86: 608-614
        • Fonoff E.T.
        • Oliveira Souza C.
        • Souza-Pinto C.P.
        • et al.
        Spinal cord stimulation improves gait performance in advanced Parkinson disease in chronic STN-DBS patients: Pilot study.
        Sterotact Funct Neurosurg. 2014; 92 (A256): 21
        • Gybels J.M.
        • Sweet W.H.
        Neurosurgical treatment of persistent pain.
        Karger, Basel1989
        • Canavero S.
        • Bonicalzi V.
        Central pain syndrome.
        Cambridge Univeristy Press, Cambridge2007: 2011
        • Petkó M.
        • Antal M.
        Propriospinal pathways in the dorsal horn (laminae I-IV) of the rat lumbar spinal cord.
        Brain Res Bull. 2012; 89: 41-49
        • Liddelow S.A.
        • Barres B.A.
        Regeneration: Not everything is scary about a glial scar.
        Nature. 2016; 532: 182-183
        • Ruschel J.
        • Hellal F.
        • Flynn K.C.
        • et al.
        Axonal regeneration. Systemic administration of epothilone B promotes axon regeneration after spinal cord injury.
        Science. 2015; 348: 347-352
        • Kushchayev S.V.
        • Giers M.B.
        • Hom Eng D.
        • et al.
        Hyaluronic acid scaffold has a neuroprotective effect in hemisection spinal cord injury.
        J Neurosurg Spine. 2016; : 1-11
        • Chang W.C.
        • Hawkes E.
        • Keller C.G.
        • Sretavan D.W.
        Axon repair: surgical application at a subcellular scale.
        Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2010; 2: 151-161
        • Reibold M.
        • Paufler P.
        • Levin A.A.
        • et al.
        Carbon nanotubes in an ancient Damascus sabre.
        Nature. 2006; 444: 286
        • McCarthy C.T.
        • Hussey M.
        • Gilchrist M.D.
        On the sharpness of straight edge blades in cutting soft solids: Part I-indentation experiments.
        Eng Fract Mech. 2007; 74: 2205-2224
        • Reyssat E.
        • Tallinen T.
        • Le Merrer M.
        • Mahadevan L.
        Slicing softly with shear.
        Phys Rev Lett. 2012; 109: 244-301
        • Fenrich K.K.
        • Rose P.K.
        Spinal interneuron axons spontaneously regenerate after spinal cord injury in the adult feline.
        J Neurosci. 2009; 29: 12145-12158
        • Conta A.C.
        • Stelzner D.J.
        Differential vulnerability of propriospinal tract neurons to spinal cord contusion injury.
        J Comp Neurol. 2004; 479: 347-359
      1. Canavero S. Head transplantation and the quest for immortality. AMAZON CreateSpace Independent Publishing Platform; 2014.

        • Estrada V.
        • Brazda N.
        • Schmitz C.
        • Heller S.
        • Blazyca H.
        • Martini R.
        • et al.
        Long-lasting significant functional improvement in chronic severe spinal cord injury following scar resection and polyethylene glycol implantation.
        Neurobiol Dis. 2014; 67C: 165-179
        • Bittner G.D.
        • Keating C.P.
        • Kane J.R.
        • et al.
        Rapid, effective, and long-lasting behavioral recovery produced by microsutures, methylene blue, and polyethylene glycol after completely cutting rat sciatic nerves.
        J Neurosci Res. 2012; 90: 967-980
        • Riley D.C.
        • Bittner G.D.
        • Mikesh M.
        • et al.
        Polyethylene glycol-fused allografts produce rapid behavioral recovery after ablation of sciatic nerve segments.
        J Neurosci Res. 2015; 93: 572-583
        • Isa T.
        • Nishimura Y.
        Plasticity for recovery after partial spinal cord injury—Hierarchical organization.
        Neurosci Res. 2014; 78: 3-8
        • Kerschensteiner M.
        • Schwab M.E.
        • Lichtman J.W.
        • Misgeld T.
        In vivo imaging of axonal degeneration and regeneration in the injured spinal cord.
        Nat Med. 2005; 11: 572-577
        • Houle J.D.
        • Jin Y.
        Chronically injured supraspinal neurons exhibit only modest axonal dieback in response to a cervical hemisection lesion.
        Exp Neurol. 2001; 169: 208-217
        • Seif G.I.
        • Nomura H.
        • Tator C.H.
        Retrograde axonal degeneration “dieback” in the corticospinal tract after transection injury of the rat spinal cord: A confocal microscopy study.
        J Neurotrauma. 2007; 24: 1513-1528
        • Brazda N.
        • Estrada V.
        • Voss C.
        • Seide K.
        • Trieu H.K.
        • Müller H.W.
        Experimental Strategies to Bridge Large Tissue Gaps in the Injured Spinal Cord after Acute and Chronic Lesion.
        J Vis Exp. 2016; 110https://doi.org/10.3791/53331
        • Amoozgar Z.
        • Rickett T.
        • Park J.
        • Tuchek C.
        • Shi R.
        • Yeo Y.
        Semi-interpenetrating network of polyethylene glycol and photocrosslinkable chitosan as an in-situ-forming nerve adhesive.
        Acta Biomater. 2012; 8: 1849-1858
        • Rickett T.A.
        • Amoozgar Z.
        • Tuchek C.A.
        • Park J.
        • Yeo Y.
        • Shi R.
        Rapidly photo-cross-linkable chitosan hydrogel for peripheral neurosurgeries.
        Biomacromolecules. 2011; 12: 57-65
        • Elzinga K.
        • Tyreman N.
        • Ladak A.
        • Savaryn B.
        • Olson J.
        • Gordon T.
        Brief electrical stimulation improves nerve regeneration after delayed repair in Sprague Dawley rats.
        Exp Neurol. 2015; 269: 142-153
        • Wong J.N.
        • Olson J.L.
        • Morhart M.J.
        • Chan K.M.
        Electrical stimulation enhances sensory recovery: A randomized controlled trial.
        Ann Neurol. 2015; 77: 996-1006
      2. Becker RO. The body electric. W Morrow/Harper Collins; 1985.

        • Lee M.
        • Kiernan M.C.
        • Macefield V.G.
        • Lee B.B.
        • Lin C.S.
        Short-term peripheral nerve stimulation ameliorates axonal dysfunction after spinal cord injury.
        J Neurophysiol. 2015; 113: 3209-3218
        • Canavero S.
        • Ren X.P.
        Commentary. The spark of life. Engaging the cortico-truncoreticulo-propriospinal pathway by electrical stimulation.
        CNS Neurosci Ther. 2016; 22: 260-261
        • Minassian K.
        • Hofstoetter U.S.
        Spinal cord stimulation and augmentative control strategies for leg movement after spinal paralysis in humans.
        CNS Neurosci Ther. 2016; 22: 262-270
        • Wenger N.
        • Moraud E.M.
        • Gandar J.
        • et al.
        Spatiotemporal neuromodulation therapies engaging muscle synergies improve motor control after spinal cord injury.
        Nature Med. 2016; 22: 138-145