Advertisement

The pediatric intestinal mucosal microbiome remains altered after clinical resolution of inflammatory and ischemic disease

      Background

      The pediatric intestinal microbiome is impacted by many factors, including age, diet, antibiotics, and environment. We hypothesized that in operative patients, alterations to antibiotics and mechanoluminal stimulation would demonstrate measurable changes in the intestinal microbiome and that microbial diversity would be reduced without normal mechanoluminal stimulation and with prolonged antibiotic treatment.

      Methods

      Bacterial 16s rRNA was extracted from swabbed samples of 43 intestines from 29 patients, aged 5 days to 13 years old. Swabs were obtained during initial resection or later stoma closure. Samples were compared using phylogenetic diversity whole tree alpha diversity and unweighted UniFrac distance beta diversity and by comparing significantly different taxonomic groups.

      Results

      Microbial community structure varied significantly between obstructive and inflammatory diseases (P = .001), with an effect size of 0.99 (0.97, 1.00). This difference persisted even 6 weeks after return to health. Family Enterobacter and Clostridiaceae predominated in patients with necrotizing enterocolitis or focal intestinal perforation; patients with an obstructive pathology had an abundance of Bacteroides. Comparison of UniFrac distance between paired proximal and distal intestines demonstrated that paired samples were significantly closer than any other comparison.

      Conclusion

      In infants, inflammatory and ischemic intestinal pathologies treated with prolonged courses of antibiotics durably alter the intestinal mucosal microbiome. Diversion of mechanoluminal stimulation, however, does not.
      To read this article in full you will need to make a payment
      Subscribe to Surgery
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Maslowski K.M.
        • Mackay C.R.
        Diet, gut microbiota and immune responses.
        Nat Immunol. 2011; 12: 5-9
        • Mazmanian S.K.
        • Round J.L.R.
        • Kasper D.L.
        A microbial symbiosis factor prevents intestinal inflammatory disease.
        Nature. 2008; 453: 620-625
        • Till H.
        • Castellani C.
        • Moissi-Eichinger C.
        • Gorkiewicz G.
        • Singer G.
        Disruptions of the intestinal microbiome in necrotizing enterocolitis, short bowel syndrome, and Hirschsprung's associated enterocolitis.
        Front Microbiol. 2015; 6: 1154
        • Yan Z.
        • Poroyko V.
        • Gu S.
        • Zhang Z.
        • Pan L.
        • Wang J.
        • et al.
        Characterization of the intestinal microbiome of Hirschsprung's disease with and without enterocolitis.
        Biochem Biophys Res Commun. 2014; 445: 269-274
        • Frykman P.K.
        • Nordenskjold A.
        • Kawaguchi A.
        • Hui T.T.
        • Granstrom A.L.
        • Cheng Z.
        • et al.
        Characterization of bacterial and fungal microbiome in children with Hirschsprung disease with and without a history of enterocolitis: A multicenter study.
        PLoS One. 2015; 10: e0124172
        • Johnson C.L.
        • Versalovic J.
        The human microbiome and its potential importance to pediatrics.
        Pediatrics. 2012; 129: 950-960
        • Ralls M.W.
        • Miyasaka E.
        • Teitelbaum D.H.
        Intestinal microbial diversity and perioperative complications.
        JPEN J Parenter Enteral Nutr. 2014; 38: 392-399
        • Madan J.C.
        • Farzan S.F.
        • Hibberd P.L.
        • Karagas M.R.
        Normal neonatal microbiome variation in relation to environmental factors, infection and allergy.
        Curr Opin Pediatr. 2012; 24: 753-759
        • Vael C.
        • Desager K.
        The importance of the development of the intestinal microbiota in infancy.
        Curr Opin Pediatr. 2009; 21: 794-800
        • Penders J.
        • Thijs C.
        • Vink C.
        • Stelma F.F.
        • Snijders B.
        • Kummeling I.
        • et al.
        Factors influencing the composition of the intestinal microbiota in early infancy.
        Pediatrics. 2006; 118: 511-521
        • Lewis J.D.
        • Chen E.Z.
        • Baldassano R.N.
        • Otley A.R.
        • Griffiths A.M.
        • Lee D.
        • et al.
        Inflammation, antibiotics, and diet as environmental stressors of the gut microbiome in pediatric Crohn's disease.
        Cell Host Microbe. 2015; 18: 489-500
        • Brower-Sinning R.
        • Zhong D.
        • Good M.
        • Firek B.
        • Baker R.
        • Sodhi C.P.
        • et al.
        Mucosa-associated bacterial diversity in necrotizing enterocolitis.
        PLoS One. 2014; 9: e105046
        • Mai V.
        • Young C.M.
        • Ukhanova M.
        • Wang X.
        • Sun Y.
        • Casella G.
        • et al.
        Fecal microbiota in premature infants prior to necrotizing enterocolitis.
        PLoS One. 2011; 6: e20647
        • Yatsunenko T.
        • Rey F.E.
        • Manary M.J.
        • Trehan I.
        • Dominguez-Bello M.G.
        • Contreras M.
        • et al.
        Human gut microbiome viewed across age and geography.
        Nature. 2012; 486: 222-227
        • Eckburg P.B.
        • Bik E.M.
        • Bernstein C.N.
        • Purdom E.
        • Dethlefsen L.
        • Sargent M.
        • et al.
        Diversity of the human intestinal microbial flora.
        Science. 2005; 308: 1635-1638
        • Haange S.B.
        • Oberbach A.
        • Schlichting N.
        • Hugenholtz F.
        • Smidt H.
        • von Bergen M.
        • et al.
        Metaproteome analysis and molecular genetics of rat intestinal microbiota reveals section and localization resolved species distribution and enzymatic functionalities.
        J Proteome Res. 2012; 11: 5406-5417
        • Normann E.
        • Fahlen A.
        • Engstrand L.
        • Lilja H.E.
        Intestinal microbial profiles in extremely preterm infants with and without necrotizing enterocolitis.
        Acta Paediatr. 2013; 102: 129-136
        • Morrow A.L.
        • Lagomarcino A.J.
        • Schibler K.R.
        • Taft D.H.
        • Yu Z.
        • Wang B.
        • et al.
        Early microbial and metabolomic signatures predict later onset of necrotizing enterocolitis in preterm infants.
        Microbiome. 2013; 1: 13
        • Whittaker R.
        Evolution and measurement of species diversity.
        Taxon. 1972; 21: 213-251
        • Caporaso J.G.
        • Lauber C.L.
        • Walters W.A.
        • Berg-Lyons D.
        • Huntley J.
        • Fierer N.
        • et al.
        Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms.
        ISME J. 2012; 6: 1621-1624
        • McDonald D.
        • Price M.N.
        • Goodrich J.
        • Nawrocki E.P.
        • DeSantis T.Z.
        • Probst A.
        • et al.
        An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea.
        ISME J. 2011; 6: 610-618
        • Edgar R.C.
        Search and clustering orders of magnitude faster than BLAST.
        Bioinformatics. 2010; 26: 2460-2461
        • Caporaso J.G.
        • Kuczynski J.
        • Stombaugh J.
        • Bittinger K.
        • Bushman F.D.
        • Costello E.K.
        • et al.
        QIIME allows analysis of high-throughput community sequencing data.
        Nat Methods. 2010; 7: 335-336
        • Faith D.P.
        Conservation evaluation and phylogenetic diversity.
        Biol Conserv. 2015; 61: 1-10
        • Lozupone C.
        • Knight R.
        UniFrac: A new phylogenetic method for comparing microbial communities.
        Appl Environ Microbiol. 2005; 71: 8228-8235
        • Anderson M.J.
        Distance-based tests for homogeneity of multivariate dispersions.
        Biometrics. 2015; 62: 245-253
        • Debelius J.W.
        Improved methods for understanding the human gut microbiome.
        University of Colorado Boulder, Boulder (CO)2015
        • Koenig J.E.
        • Spor A.
        • Scalfone N.
        • Fricker A.D.
        • Stombaugh J.
        • Knight R.
        • et al.
        Succession of microbial consortia in the developing infant gut microbiome.
        Proc Natl Acad Sci U S A. 2011; 108: 4578-4585
        • Costello E.K.
        • Lauber C.L.
        • Hamady M.
        • Fierer N.
        • Gordon J.I.
        • Knight R.
        Bacterial community variation in human body habitats across space and time.
        Science. 2009; 326: 1694-1697
        • Gorkiewicz G.
        • Thallinger G.G.
        • Trajanoski S.
        • Lackner S.
        • Stocker G.
        • Hinterleitner T.
        • et al.
        Alterations in the colonic microbiota in response to osmotic diarrhea.
        PLoS One. 2013; 8: e55817
        • Donowitz J.R.
        • Petri W.A.
        Pediatric small intestinal bacterial overgrowth in low-income countries.
        Trends Mol Med. 2015; 21: 6-15
        • Roland B.C.
        • Ciarleglio M.M.
        • Clarke J.O.
        • Semler J.R.
        • Tomakin E.
        • Mullin G.E.
        • et al.
        Small intestinal transit time is delayed in small intestinal bacterial overgrowth.
        J Clin Gastroenterol. 2015; 49: 571-576
        • Engstrand Lilja H.
        • Wefer H.
        • Nyström N.
        • Finkel Y.
        • Engstrand L.
        Intestinal dysbiosis in children with short bowel syndrome is associated with impaired outcome.
        Microbiome. 2015; 3: 18