Advertisement
Thoracic| Volume 169, ISSUE 2, P436-446, February 2021

Pulmonary lobectomy for cancer: Systematic review and network meta-analysis comparing open, video-assisted thoracic surgery, and robotic approach

Published:October 20, 2020DOI:https://doi.org/10.1016/j.surg.2020.09.010

      Abstract

      Background

      Although minimally invasive lobectomy has gained worldwide interest, there has been debate on perioperative and oncological outcomes. The purpose of this study was to compare outcomes among open lobectomy, video-assisted thoracic surgery lobectomy, and robotic lobectomy.

      Methods

      PubMed, EMBASE, and Web of Science databases were consulted. A fully Bayesian network meta-analysis was performed.

      Results

      Thirty-four studies (183,426 patients) were included; 88,865 (48.4%) underwent open lobectomy, 79,171 (43.2%) video-assisted thoracic surgery lobectomy, and 15,390 (8.4%) robotic lobectomy. Compared with open lobectomy, video-assisted thoracic surgery, lobectomy and robotic lobectomy had significantly reduced 30-day mortality (risk ratio = 0.53; 95% credible intervals, 0.40–0.66 and risk ratio = 0.51; 95% credible intervals, 0.36–0.71), pulmonary complications (risk ratio = 0.70; 95% credible intervals, 0.51–0.92 and risk ratio = 0.69; 95% credible intervals, 0.51–0.88), and overall complications (risk ratio = 0.77; 95% credible intervals, 0.68–0.85 and risk ratio = 0.79; 95% credible intervals, 0.67–0.91). Compared with video-assisted thoracic surgery lobectomy, open lobectomy, and robotic lobectomy had a significantly higher total number of harvested lymph nodes (mean difference = 1.46; 95% credible intervals, 0.30, 2.64 and mean difference = 2.18; 95% credible intervals, 0.52–3.92) and lymph nodes stations (mean difference = 0.37; 95% credible intervals, 0.08–0.65 and mean difference = 0.93; 95% credible intervals, 0.47–1.40). Positive resection margin and 5-year overall survival were similar across treatments. Intraoperative blood loss, postoperative transfusion, hospital length of stay, and 30-day readmission were significantly reduced for minimally invasive approaches.

      Conclusion

      Compared with open lobectomy, video-assisted thoracic surgery lobectomy, and robotic lobectomy seem safer with reduced 30-day mortality, pulmonary, and overall complications with equivalent oncologic outcomes and 5-year overall survival. Minimally invasive techniques may improve outcomes and surgeons should be encouraged, when feasible, to adopt video-assisted thoracic surgery lobectomy, or robotic lobectomy in the treatment of lung cancer.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Surgery
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Ettinger D.S.
        • Wood D.E.
        • Aisner D.L.
        • et al.
        Non-small cell lung cancer, version 5.2017, NCCN Clinical Practice Guidelines in Oncology.
        J Natl Compr Canc Netw. 2017; 15: 504-535
        • Vansteenkiste J.
        • Crinò L.
        • Dooms C.
        • et al.
        2nd ESMO Consensus Conference on Lung Cancer: early-stage non-small-cell lung cancer consensus on diagnosis, treatment and follow-up.
        Ann Oncol. 2014; 25: 1462-1474
      1. Yang CJ, Kumar A, Deng JZ, et al. A national analysis of short-term outcomes and long-term survival following thoracoscopic versus open lobectomy for clinical stage II non-small-cell lung cancer [e-pub ahead of print]. Ann Surg. 2019. https://doi.org/10.1097/SLA.0000000000003231. Accessed March 26, 2020.

        • Pagès P.B.
        • Delpy J.P.
        • Orsini B.
        • et al.
        Propensity score analysis comparing video thoracoscopic lobectomy with thoracotomy: a French nationwide study.
        Ann Thorac Surg. 2016; 101: 1370-1378
        • Wang Z.
        • Pang L.
        • Tang J.
        • et al.
        Video-assisted thoracoscopic surgery versus muscle-sparing thoracotomy for non-small cell lung cancer: a systematic review and meta-analysis.
        BMC Surg. 2019; 19: 144
        • Boffa D.J.
        • Dhamija A.
        • Kosinski A.S.
        • et al.
        Fewer complications result from a video-assisted approach to anatomic resection of clinical stage I lung cancer.
        J Thorac Cardiovasc Surg. 2014; 148: 637-643
        • Bendixen M.
        • Jørgensen O.D.
        • Kronborg C.
        • et al.
        Postoperative pain and quality of life after lobectomy via video-assisted thoracoscopic surgery or anterolateral thoracotomy for early stage lung cancer: a randomised controlled trial.
        Lancet Oncol. 2016; 17: 836-844
        • Medbery R.L.
        • Gillespie T.W.
        • Liu Y.
        • et al.
        Nodal upstaging is more common with thoracotomy than with VATS during lobectomy for early-stage lung cancer: an analysis from the national cancer data base.
        J Thorac Oncol. 2016; 11: 222-233
        • Zhang W.
        • Wei Y.
        • Jiang H.
        • et al.
        Thoracotomy is better than thoracoscopic lobectomy in the lymph node dissection of lung cancer: a systematic review and meta-analysis.
        World J Surg Oncol. 2016; 14: 290
        • Denlinger C.E.
        • Fernandez F.
        • Meyers B.F.
        • et al.
        Lymph node evaluation in video-assisted thoracoscopic lobectomy versus lobectomy by thoracotomy.
        Ann Thorac Surg. 2010; 89: 1730-1735
        • Morgan J.A.
        • Ginsburg M.E.
        • Sonett J.R.
        • et al.
        Advanced thoracoscopic procedures are facilitated by computer-aided robotic technology.
        Eur J Cardiothorac Surg. 2003; 23: 883-887
        • Ashton Jr., R.C.
        • Connery C.P.
        • Swistel D.G.
        • et al.
        Robot-assisted lobectomy.
        J Thorac Cardiovasc Surg. 2003; 126: 292-293
        • Linsky P.
        • Wei B.
        Robotic lobectomy.
        J Vis Surg. 2017; 3: 132
        • Kaur M.N.
        • Xie F.
        • Shiwcharan A.
        • et al.
        Robotic versus video-assisted thoracoscopic lung resection during early program development.
        Ann Thorac Surg. 2018; 105: 1050-1057
        • Emmert A.
        • Straube C.
        • Buentzel J.
        • et al.
        Robotic versus thoracoscopic lung resection: a systematic review and meta-analysis.
        Medicine (Baltimore). 2017; 96e7633
        • O'Sullivan K.E.
        • Kreaden U.S.
        • Hebert A.E.
        • et al.
        A systematic review and meta-analysis of robotic versus open and video-assisted thoracoscopic surgery approaches for lobectomy.
        Interact Cardiovasc Thorac Surg. 2019; 28: 526-534
        • Liberati A.
        • Altman D.G.
        • Tetzlaff J.
        • et al.
        The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration.
        BMJ. 2009; 339: b2700
        • Goossen K.
        • Tenckhoff S.
        • Probst P.
        • et al.
        Optimal literature search for systematic reviews in surgery.
        Langenbecks Arch Surg. 2018; 403: 119-129
        • Fernandez F.G.
        • Falcoz P.E.
        • Kozower B.D.
        • et al.
        The Society of Thoracic Surgeons and the European Society of Thoracic Surgeons general thoracic surgery databases: joint standardization of variable definitions and terminology.
        Ann Thorac Surg. 2015; 99: 368-376
        • Sterne J.A.
        • Hernan M.A.
        • Reeves B.C.
        • et al.
        ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions.
        BMJ. 2016; i4919: 355
        • Higgins J.P.
        • Altman D.G.
        • Gotzsche P.C.
        • et al.
        The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials.
        BMJ. 2011; 343: d5928
        • Aiolfi A.
        • Tornese S.
        • Bonitta G.
        • et al.
        Roux-en-Y gastric bypass: systematic review and Bayesian network meta-analysis comparing open, laparoscopic, and robotic approach.
        Surg Obes Relat Dis. 2019; 15: 985-994
        • Dias S.
        • Welton N.J.
        • Sutton A.J.
        • et al.
        NICE DSU Technical Support Document 2: a Generalised Linear Modelling Framework For Pairwise And Network Meta-Analysis Of Randomised Controlled Trials.
        National Institute for Health and Care Excellence (NICE), London2014
        • van Valkenhoef G.
        • Lu G.
        • de Brock B.
        • et al.
        Automating network meta-analysis.
        Res Synth Methods. 2012; 3: 285-299
        • Friede T.
        • Röver C.
        • Wandel S.
        • et al.
        Meta-analysis of few small studies in orphan diseases.
        Res Synth Methods. 2017; 8: 79-91
        • Schmidli H.
        • Neuenschwander B.
        • Friede T.
        Meta-analytic-predictive use of historical variance data for the design and analysis of clinical trials.
        Computational Statistics & Data Analysis. 2007; 113: 100-110
        • Guyot P.
        • Ades A.E.
        • Ouwens M.J.
        • et al.
        Enhanced secondary analysis of survival data: reconstructing the data from published Kaplan-Meier survival curves.
        BMC Med Res Methodol. 2012; 12: 9
        • Saluja R.
        • Cheng S.
        • Delos Santos K.A.
        • et al.
        Estimating hazard ratios from published Kaplan-Meier survival curves: a methods validation study.
        Res Synth Methods. 2019; 10: 465-475
        • Woods B.S.
        • Hawkins N.
        • Scott D.A.
        Network meta-analysis on the log-hazard scale, combining count and hazard ratio statistics accounting for multi-arm trials: a tutorial.
        BMC Med Res Methodol. 2010; 10: 54
        • Smith B.J.
        boa: an R package for MCMC output convergence assessment and posterior inference.
        J Stat Softw. 2007; 21: 1-37
        • Salanti G.
        • Del Giovane C.
        • Chaimani A.
        • et al.
        Evaluating the quality of evidence from a network metaanalysis.
        PLoS One. 2014; 9e99682
      2. Plummer M. JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. Proceedings of the 3rd International Workshop on Distributed Statistical Computing (DSC 2003); Vienna, Austria.

        • R Core Team
        R: A language and environment for statistical computing. r foundation for statistical computing; Vienna, Austria.
        (Available from:)
        http://www.R-project.org/
        Date accessed: November 30, 2018
        • Paul S.
        • Altorki N.K.
        • Sheng S.
        • et al.
        Thoracoscopic lobectomy is associated with lower morbidity than OpenLOBectomy: a propensity-matched analysis from the STS database.
        J Thorac Cardiovasc Surg. 2010; 139: 366-378
        • Berry M.F.
        • Villamizar-Ortiz N.R.
        • Tong B.C.
        • et al.
        Pulmonary function tests do not predict pulmonary complications after thoracoscopic lobectomy.
        Ann Thorac Surg. 2010; 89: 1044-1052
        • Park J.S.
        • Kim K.
        • Choi M.S.
        • et al.
        Video-assisted thoracic surgery (VATS) lobectomy for pathologic stage I non-small cell lung cancer: a comparative study with thoracotomy lobectomy.
        Korean J Thorac Cardiovasc Surg. 2011; 44: 32-38
        • Flores R.M.
        • Ihekweazu U.N.
        • Rizk N.
        • et al.
        Patterns of recurrence and incidence of second primary tumors after lobectomy by means of video-assisted thoracoscopic surgery (VATS) versus thoracotomy for lung cancer.
        J Thorac Cardiovasc Surg. 2011; 141: 59-64
        • Lee H.S.
        • Jang H.J.
        Thoracoscopic mediastinal lymph node dissection for lung cancer.
        Semin Thorac Cardiovasc Surg. 2012; 24: 131-141
        • Hanna W.
        • De Valence M.
        • Atenafu E.G.
        • et al.
        Is video-assisted lobectomy for non-small cell lung cancer oncologically equivalent to open lobectomy?.
        Interact Cardiovasc Thorac Surg. 2012; 15: S26
        • Lee P.C.
        • Nasar A.
        • Port J.L.
        • et al.
        Long-term survival after lobectomy for non-small cell lung cancer by video-assisted thoracic surgery versus thoracotomy.
        Ann Thorac Surg. 2013; 96: 951-961
        • Zhong C.
        • Yao F.
        • Zhao H.
        Clinical outcomes of thoracoscopic lobectomy for patients with clinical N0 and pathologic N2 non-small cell lung cancer.
        Ann Thorac Surg. 2013; 95: 987-992
        • Licht P.B.
        • Jørgensen O.D.
        • Ladegaard L.
        • et al.
        A national study of nodal upstaging after thoracoscopic versus open lobectomy for clinical stage I lung cancer.
        Ann Thorac Surg. 2013; 96: 943-950
        • Adams R.D.
        • Bolton W.D.
        • Stephenson J.E.
        • et al.
        Initial multicenter community robotic lobectomy experience: comparisons to a national database.
        Ann Thorac Surg. 2014; 97: 1893
        • Jeon J.H.
        • Kang C.H.
        • Kim H.-S.
        • et al.
        Video-assisted thoracoscopic lobectomy in non-small- cell lung cancer patients with chronic obstructive pulmonary disease is associated with lower pulmonary complications than open lobectomy: a propensity score-matched analysis.
        Eur J Cardiothorac Surg. 2014; 45: 640-645
        • Paul S.
        • Jalbert J.
        • Isaacs A.J.
        • et al.
        Comparative effectiveness of robotic-assisted vs thoracoscopic lobectomy.
        Chest. 2014; 146: 1505-1512
        • Cai H.B.
        • Li Y.X.
        • Li Z.
        Short term curative effect of video assisted thoracoscopic lobectomy for early-stage lung cancer.
        Indian J Cancer. 2015; 51: e37-e41
        • Stephens N.
        • Rice D.
        • Correa A.
        • et al.
        Thoracoscopic lobectomy is associated with improved short-term and equivalent oncological outcomes compared with open lobectomy for clinical stage I non-small-cell lung cancer: a propensity-matched analysis of 963 cases.
        Eur J Cardiothorac Surg. 2014; 46: 607-613
        • Murakawa T.
        • Ichinose J.
        • Hino H.
        • et al.
        Long-term outcomes of open and video-assisted thoracoscopic lung lobectomy for the treatment of early stage non-small cell lung cancer are similar: a propensity-matched study.
        World J Surg. 2015; 39: 1084-1091
        • Lee B.E.
        • Shapiro M.
        • Rutledge J.R.
        • et al.
        Nodal upstaging in robotic and video assisted thoracic surgery lobectomy for clinical N0 lung cancer.
        Ann Thorac Surg. 2015; 100: 229-234
        • Laursen L.Ø.
        • Petersen R.H.
        • Hansen H.J.
        • et al.
        Video-assisted thoracoscopic surgery lobectomy for lung cancer is associated with a lower 30-day morbidity compared with lobectomy by thoracotomy.
        Eur J Cardiothorac Surg. 2016; 49: 870-875
        • Nwogu C.E.
        • D’Cunha J.
        • Pang H.
        • et al.
        VATS lobectomy has better perioperative outcomes than open lobectomy: CALGB 31001, an ancillary analysis of CALGB 140202 (Alliance).
        Ann Thorac Surg. 2015; 99: 399-405
        • Kuritzky A.M.
        • Aswad B.I.
        • Jones R.N.
        • et al.
        Lobectomy by video-assisted thoracic surgery vs muscle-sparing thoracotomy for stage I lung cancer: a critical evaluation of short- and long-term outcomes.
        J Am Coll Surg. 2015; 220: 1044-1053
        • Falcoz P.-E.
        • Puyraveau M.
        • Thomas P.-A.
        • et al.
        Video-assisted thoracoscopic surgery versus open lobectomy for primary non-small-cell lung cancer: a propensity-matched analysis of outcome from the European Society of thoracic surgeon database.
        Eur J Cardiothorac Surg. 2016; 49: 602-609
        • Chen K.
        • Wang X.
        • Yang F.
        Propensity-matched comparison of video-assisted thoracoscopic with thoracotomy lobectomy for locally advanced non-small cell lung cancer.
        J Thorac Cardiovasc Surg. 2017; 153: 967-976
        • Yang H.X.
        • Woo K.M.
        • Sima C.S.
        • et al.
        Long-term survival based on the surgical approach to lobectomy for clinical stage I nonsmall cell lung cancer: Comparison of robotic, video-assisted thoracic surgery, and thoracotomy lobectomy.
        Ann Surg. 2017; 265: 431-437
        • Zhao Y.
        • Li G.
        • Zhang Y.
        • et al.
        Comparison of outcomes between muscle-sparing thoracotomy and video-assisted thoracic surgery in patients with cT1 N0 M0 lung cancer.
        J Thorac Cardiovasc Surg. 2017; 154: 1420-1429
        • Long H.
        • Tan Q.
        • Luo Q.
        • et al.
        Thoracoscopic surgery versus thoracotomy for lung cancer: short-term outcomes of a randomized trial.
        Ann Thorac Surg. 2018; 105: 386-392
        • Reddy R.M.
        • Gorrepati M.L.
        • Oh D.S.
        • et al.
        Robotic-assisted versus thoracoscopic lobectomy outcomes from high-volume thoracic surgeons.
        Ann Thorac Surg. 2018; 106: 902-908
        • Spaggiari L.
        • Sedda G.
        • Maisonneuve P.
        • et al.
        A brief report on survival after robotic lobectomy for early-stage lung cancer.
        J Thorac Oncol. 2019; 14: 2176-2180
        • Subramanian M.P.
        • Liu J.
        • Chapman W.C.
        • et al.
        Utilization trends, outcomes, and cost in minimally invasive lobectomy.
        Ann Thorac Surg. 2019; 108: 1648-1655
        • Bailey K.
        • Merchant N.
        • Seo Y.
        • et al.
        Short-term readmissions after open, thoracoscopic, and robotic lobectomy for lung cancer based on the nationwide readmissions database.
        World J Surg. 2019; 43: 1377-1384
        • Hennon M.W.
        • DeGraaff L.H.
        • Groman A.
        • et al.
        The association of nodal upstaging with surgical approach and its impact on long-term survival after resection of non-small-cell lung cancer.
        Eur J Cardiothorac Surg. 2020; 57: 888-895
        • Huang L.
        • Shen Y.
        • Onaitis M.
        • et al.
        Comparative study of anatomic lung resection by robotic vs. video-assisted thoracoscopic surgery.
        J Thorac Dis. 2019; 11: 1243-1250
        • Nelson D.B.
        • Mehran R.J.
        • Mitchell K.G.
        • et al.
        Robotic-assisted lobectomy for non-small cell lung cancer: a comprehensive institutional experience.
        Ann Thorac Surg. 2019; 108: 370-376
        • Veluswamy R.
        • Whittaker Brown S.
        • Mhango G.
        • et al.
        Comparative effectiveness of robotic-assisted surgery for resectable lung cancer in older patients.
        Chest. 2020; 157: 1313-1321
        • Kneuertz P.J.
        • Cheufou D.H.
        • D’Souza D.M.
        • et al.
        Propensity-score adjusted comparison of pathologic nodal upstaging by robotic, video-assisted thoracoscopic, and open lobectomy for non-small cell lung cancer.
        J Thorac Cardiovasc Surg. 2019; 158: 1457-1466.e2
        • Haruki T.
        • Kubouchi Y.
        • Takagi Y.
        • et al.
        Comparison of medium-term survival outcomes between robot-assisted thoracoscopic surgery and video-assisted thoracoscopic surgery in treating primary lung cancer.
        Gen Thorac Cardiovasc Surg. 2020; 68: 984-992
        • Merritt R.E.
        • Hoang C.D.
        • Shrager J.B.
        Lymph node evaluation achieved by open lobectomy compared with thoracoscopic lobectomy for N0 lung cancer.
        Ann Thorac Surg. 2013; 96: 1171-1177
        • Tang A.
        • Raja S.
        • Bribriesco A.
        • et al.
        Robotic approach offers similar nodal upstaging to open lobectomy for clinical stage I non-small cell lung cancer.
        Ann Thorac Surg. 2020; 110: 424-433
        • Augustin F.
        • Bodner J.
        • Maier H.
        • et al.
        Robotic-assisted minimally invasive vs. thoracoscopic lung lobectomy: comparison of perioperative results in a learning curve setting.
        Langenbeck’s Arch Surg. 2013; 398: 895-901
        • Shrier I.
        • Boivin J.F.
        • Steele R.J.
        • et al.
        Should meta-analyses of interventions include observational studies in addition to randomized controlled trials? A critical examination of underlying principles.
        Am J Epidemiol. 2007; 166: 1203-1209