Advertisement

Does near-infrared fluorescent cholangiography with indocyanine green reduce bile duct injuries and conversions to open surgery during laparoscopic or robotic cholecystectomy? — A meta-analysis

Published:January 18, 2021DOI:https://doi.org/10.1016/j.surg.2020.12.008

      Abstract

      Background

      Bile duct injury and conversion-to-open–surgery rates remain unacceptably high during laparoscopic and robotic cholecystectomy. In a recently published randomized clinical trial, using near-infrared fluorescent cholangiography with indocyanine green intraoperatively markedly enhanced biliary-structure visualization. Our systematic literature review compares bile duct injury and conversion-to-open–surgery rates in patients undergoing laparoscopic or robotic cholecystectomy with versus without near-infrared fluorescent cholangiography.

      Methods

      A thorough PubMed search was conducted to identify randomized clinical trials and nonrandomized clinical trials with ≥100 patients. Because all near-infrared fluorescent cholangiography studies were published since 2013, only studies without near-infrared fluorescent cholangiography published since 2013 were included for comparison. Incidence estimates, weighted and unweighted for study size, were adjusted for acute versus chronic cholecystitis, and for robotic versus laparoscopic cholecystectomy and are reported as events/10,000 patients. All studies were assessed for bias risk and high-risk studies excluded.

      Results

      In total, 4,990 abstracts were reviewed, identifying 5 near-infrared fluorescent cholangiography studies (3 laparoscopic cholecystectomy/2 robotic cholecystectomy; n = 1,603) and 11 not near-infrared fluorescent cholangiography studies (5 laparoscopic cholecystectomy/4 robotic cholecystectomy/2 both; n = 5,070) for analysis. Overall weighted rates for bile duct injury and conversion were 6 and 16/10,000 in near-infrared fluorescent cholangiography patients versus 25 and 271/10,000 in patients without near-infrared fluorescent cholangiography. Among patients undergoing laparoscopic cholecystectomy, bile duct injuries, and conversion rates among near-infrared fluorescent cholangiography versus patients without near-infrared fluorescent cholangiography were 0 and 23/10,000 versus 32 and 255/10,000, respectively. Bile duct injury rates were low with robotic cholecystectomy with and without near-infrared fluorescent cholangiography (12 and 8/10,000), but there was a marked reduction in conversions with near-infrared fluorescent cholangiography (12 vs 322/10,000).

      Conclusion

      Although large comparative trials remain necessary, preliminary analysis suggests that using near-infrared fluorescent cholangiography with indocyanine green intraoperatively sizably decreases bile duct injury and conversion-to-open–surgery rates relative to cholecystectomy under white light alone.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Surgery
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Hassler K.R.
        • Jones M.W.
        Gallbladder, Cholecystectomy, Laparoscopic. StatPearls. Treasure.
        StatPearls Publishing LLC, Island (FL)2018
        • Pontarelli E.M.
        • Grinberg G.G.
        • Isaacs R.S.
        • et al.
        Regional cost analysis for laparoscopic cholecystectomy.
        Surg Endosc. 2018; 33: 6
        • Ros A.
        • Gustafsson L.
        • Krook H.
        • et al.
        Laparoscopic cholecystectomy versus mini-laparotomy cholecystectomy: a prospective, randomized, single-blind study.
        Ann Surg. 2001; 234: 741-749
        • Browder I.W.
        • Dowling J.B.
        • Koontz K.K.
        • et al.
        Early management of operative injuries of the extrahepatic biliary tract.
        Ann Surg. 1987; 205: 649-658
        • Geer D.A.
        • Carroll C.P.
        Iatrogenic bile duct injuries: avoidance, recognition, and treatment.
        Mil Med. 1989; 154: 368-370
        • Olsen D.
        Bile duct injuries during laparoscopic cholecystectomy.
        Surg Endosc. 1997; 11: 133-138
        • Dip F.
        • Roy M.
        • Lo Menzo E.
        • et al.
        Routine use of fluorescent incisionless cholangiography as a new imaging modality during laparoscopic cholecystectomy.
        Surg Endosc. 2015; 29: 1621-1626
        • Berci G.
        • Hunter J.
        • Morgenstern L.
        • et al.
        Laparoscopic cholecystectomy: first, do no harm; second, take care of bile duct stones.
        Surg Endosc. 2013; 27: 1051-1054
        • Strasberg S.M.
        • Hertl M.
        • Soper N.J.
        An analysis of the problem of biliary injury during laparoscopic cholecystectomy.
        J Am Coll Surg. 1995; 180: 101-125
        • Seeras K.
        • Kalani A.D.
        Bile Duct, Repair. StatPearls. Treasure Island (FL).
        StatPearls Publishing LLC, 2018
        • Bernard H.R.
        • Hartman T.W.
        Complications after laparoscopic cholecystectomy.
        Am J Surg. 1993; 165: 533-535
        • Gouma D.J.
        • Go P.M.
        Bile duct injury during laparoscopic and conventional cholecystectomy.
        J Am Coll Surg. 1994; 178: 229-233
        • Regoly−Merei J.
        • Ihasz M.
        • Szeberin Z.
        • et al.
        Biliary tract complications in laparoscopic cholecystectomy. A multicenter study of 148 biliary tract injuries in 26,440 operations.
        Surg Endosc. 1998; 12: 294-300
        • Rothman J.P.
        • Burcharth J.
        • Pommergaard H.C.
        • et al.
        Less surgical experience has no impact on mortality and morbidity after laparoscopic cholecystectomy: a prospective cohort analysis.
        Surg Laparosc Endosc Percutan Tech. 2015; 5: 492-495
        • Halbert C.
        • Altieri M.S.
        • Yang J.
        • et al.
        Long-term outcomes of patients with common bile duct injury following laparoscopic cholecystectomy.
        Surg Endosc. 2016; 30: 4294-4299
        • Hofmeyr S.
        • Krige J.E.
        • Bornman P.C.
        • et al.
        A cost analysis of operative repair of major laparoscopic bile duct injuries.
        S Afr Med J. 2015; 105: 454-457
        • Schreuder A.M.
        • Busch O.R.
        • Besselink M.G.
        • et al.
        Long-term impact of iatrogenic bile duct injury.
        Dig Surg. 2019; : 1-12
        • Boerma D.
        • Rauws E.A.
        • Keulemans Y.C.
        • et al.
        Impaired quality of life 5 years after bile duct injury during laparoscopic cholecystectomy: a prospective analysis.
        Ann Surg. 2001; 234: 750-757
        • de Reuver P.R.
        • Sprangers M.A.
        • Rauws E.A.
        • et al.
        Impact of bile duct injury after laparoscopic cholecystectomy on quality of life: a longitudinal study after multidisciplinary treatment.
        Endoscopy. 2008; 40: 637-643
        • de Reuver P.R.
        • Rauws E.A.
        • Lameris J.S.
        • et al.
        Claims for damages as a result of bile-duct injury during (laparoscopic) cholecystectomy.
        Ned Tijdschr Geneeskd. 2007; 151: 1732-1736
        • Booij K.A.C.
        • de Reuver P.R.
        • van Dieren S.
        • et al.
        Long-term impact of bile duct injury on morbidity, mortality, quality of life, and work related limitations.
        Ann Surg. 2018; 268: 143-150
        • Tornqvist B.
        • Stromberg C.
        • Persson G.
        • et al.
        Effect of intended intraoperative cholangiography and early detection of bile duct injury on survival after cholecystectomy: population based cohort study.
        BMJ. 2012; 345: e6457
        • Pucher P.H.
        • Brunt L.M.
        • Davies N.
        • et al.
        Outcome trends and safety measures after 30 years of laparoscopic cholecystectomy: a systematic review and pooled data analysis.
        Surg Endosc. 2018; 32: 2175-2183
        • Shah A.A.
        • Bhatti U.F.
        • Petrosyan M.
        • et al.
        The heavy price of conversion from laparoscopic to open procedures for emergent cholecystectomies.
        Am J Surg. 2019; 217: 732-738
        • Lengyel B.I.
        • Panizales M.T.
        • Steinberg J.
        • et al.
        Laparoscopic cholecystectomy: what is the price of conversion?.
        Surgery. 2012; 152: 173-178
        • Strasberg S.M.
        • Brunt L.M.
        Rationale and use of the critical view of safety in laparoscopic cholecystectomy.
        J Am Coll Surg. 2010; 211: 132-138
        • Way L.W.
        • Stewart L.
        • Gantert W.
        • et al.
        Causes and prevention of laparoscopic bile duct injuries: analysis of 252 cases from a human factors and cognitive psychology perspective.
        Ann Surg. 2003; 237: 460-469
        • Yamashita Y.
        • Kimura T.
        • Matsumoto S.
        A safe laparoscopic cholecystectomy depends upon the establishment of a critical view of safety.
        Surg Today. 2010; 40: 507-513
        • Dip F.
        • LoMenzo E.
        • Sarotto L.
        • et al.
        Randomized trial of near-infrared incisionless fluorescent cholangiography.
        Ann Surg. 2019; 270: 8
      1. Comparing Two Proportions: Sample Size 2020.
        (Available at:)
        • Aguayo E.
        • Dobaria V.
        • Nakhla M.
        • et al.
        National trends and outcomes of inpatient robotic-assisted versus laparoscopic cholecystectomy.
        Surgery. 2020; 168: 625-630
        • Higgins J.P.T.
        • Churchill R.
        • Chandler J.
        • Cumpston M.S.
        Chapter 8: Assessing risk of bias in included studies.
        In: Cochrane Handbook for Systematic Reviews of Interventions. John Wiley & Sons, Chichester, UK2017
        • Sterne J.A.
        • Hernán M.A.
        • Reeves B.C.
        • et al.
        ROBINS-I: a tool for assessing risk of bias in non−randomised studies of interventions.
        BMJ. 2016; 355: i4919
        • Gangemi A.
        • Danilkowicz R.
        • Bianco F.
        • et al.
        Risk factors for open conversion in minimally invasive cholecystectomy.
        JSLS. 2017; 21
        • Agnus V.
        • Pesce A.
        • Boni L.
        • et al.
        Fluorescence-based cholangiography: preliminary results from the IHU-IRCAD-EAES EURO-FIGS registry.
        Surg Endosc. 2020; 34: 3888-3896
        • Bleszynski M.S.
        • DeGirolamo K.M.
        • Meneghetti A.T.
        • et al.
        Fluorescent cholangiography in laparoscopic cholecystectomy: an updated Canadian experience.
        Surg Innov. 2020; 27: 38-43
        • Daskalaki D.
        • Fernandes E.
        • Wang X.
        • et al.
        Indocyanine green (ICG) fluorescent cholangiography during robotic cholecystectomy: results of 184 consecutive cases in a single institution.
        Surg Innov. 2014; 21: 615-621
        • Agarwal B.B.
        • Agarwal N.
        • Agarwal K.A.
        • et al.
        Outcomes of laparoscopic cholecystectomy done with surgical energy versus done without surgical energy: a prospective-randomized control study.
        Surg Endosc. 2014; 28: 3059-3067
        • Chung P.J.
        • Huang R.
        • Policastro L.
        • et al.
        Single-site robotic cholecystectomy at an inner-city academic center.
        JSLS. 2015; 19e2015.00033
        • Gonzalez A.M.
        • Rabaza J.R.
        • Donkor C.
        • et al.
        Single-incision cholecystectomy: a comparative study of standard laparoscopic, robotic, and SPIDER platforms.
        Surg Endosc. 2013; 27: 4524-4531
        • Jeong S.Y.
        • Lee J.W.
        • Choi S.H.
        • et al.
        Single-incision laparoscopic cholecystectomy using instrumental alignment in robotic single-site cholecystectomy.
        Ann Surg Treat Res. 2018; 94: 291-297
        • Kubat E.
        • Hansen N.
        • Nguyen H.
        • et al.
        Urgent and elective robotic single-site cholecystectomy: analysis and learning curve of 150 consecutive cases.
        J Laparoendosc Adv Surg Tech A. 2016; 26: 185-191
        • Lee Y.J.
        • Moon J.I.
        • Choi I.S.
        • et al.
        A large-cohort comparison between single incision laparoscopic cholecystectomy and conventional laparoscopic cholecystectomy from a single center; 2080 cases.
        Ann Hepatobiliary Pancreat Surg. 2018; 22: 367-373
        • Saber A.
        • Hokkam E.N.
        Operative outcome and patient satisfaction in early and delayed laparoscopic cholecystectomy for acute cholecystitis.
        Minim Invasive Surg. 2014; 2014: 162643
        • Strosberg D.S.
        • Nguyen M.C.
        • Muscarella 2nd, P.
        • et al.
        A retrospective comparison of robotic cholecystectomy versus laparoscopic cholecystectomy: operative outcomes and cost analysis.
        Surg Endosc. 2017; 31: 1436-1441
        • Balachandran B.
        • Hufford T.A.
        • Mustafa T.
        • et al.
        A comparative study of outcomes between single-site robotic and multi-port laparoscopic cholecystectomy: an experience from a tertiary care center.
        World J Surg. 2017; 41: 1246-1253
        • Sharma S.
        • Huang R.
        • Hui S.
        • et al.
        The utilization of fluorescent cholangiography during robotic cholecystectomy at an inner-city academic medical center.
        J Robot Surg. 2018; 12: 481-485
        • Alponat A.
        • Cubukcu A.
        • Gonullu N.
        • et al.
        Is minisite cholecystectomy less traumatic? Prospective randomized study comparing minisite and conventional laparoscopic cholecystectomies.
        World J Surg. 2002; 26: 1437-1440
        • Bisgaard T.
        • Klarskov B.
        • Trap R.
        • et al.
        Microlaparoscopic vs conventional laparoscopic cholecystectomy: a prospective randomized double-blind trial.
        Surg Endosc. 2002; 16: 458-464
        • Bucher P.
        • Pugin F.
        • Buchs N.C.
        • et al.
        Randomized clinical trial of laparoendoscopic single-site versus conventional laparoscopic cholecystectomy.
        Br J Surg. 2011; 98: 1695-1702
        • Cao Z.G.
        • Cai W.
        • Qin M.F.
        • et al.
        Randomized clinical trial of single-incision versus conventional laparoscopic cholecystectomy: short-term operative outcomes.
        Surg Laparosc Endosc Percutan Tech. 2011; 21: 311-313
        • Gul R.
        • Dar R.A.
        • Sheikh R.A.
        • et al.
        Comparison of early and delayed laparoscopic cholecystectomy for acute cholecystitis: experience from a single center.
        N Am J Med Sci. 2013; 5: 414-418
        • Gutt C.N.
        • Encke J.
        • Koninger J.
        • et al.
        Acute cholecystitis: early versus delayed cholecystectomy, a multicenter randomized trial (ACDC study, NCT00447304).
        Ann Surg. 2013; 258: 385-393
        • Harju J.
        • Kokki H.
        • Paakkonen M.
        • et al.
        Feasibility of minilaparotomy versus laparoscopic cholecystectomy for day surgery: a prospective randomised study.
        Scand J Surg. 2010; 99: 132-136
        • Khan O.A.
        • Balaji S.
        • Branagan G.
        • et al.
        Randomized clinical trial of routine on-table cholangiography during laparoscopic cholecystectomy.
        Br J Surg. 2011; 98: 362-367
        • Khorgami Z.
        • Shoar S.
        • Anbara T.
        • et al.
        A randomized clinical trial comparing 4-port, 3-port, and single-incision laparoscopic cholecystectomy.
        J Invest Surg. 2014; 27: 147-154
        • Noguera J.F.
        • Cuadrado A.
        • Dolz C.
        • et al.
        Prospective randomized clinical trial comparing laparoscopic cholecystectomy and hybrid natural orifice transluminal endoscopic surgery (NOTES) (NCT00835250).
        Surg Endosc. 2012; 26: 3435-3441
        • Ozkardes A.B.
        • Tokac M.
        • Dumlu E.G.
        • et al.
        Early versus delayed laparoscopic cholecystectomy for acute cholecystitis: a prospective, randomized study.
        Int Surg. 2014; 99: 56-61
        • Rajcok M.
        • Bak V.
        • Danihel L.
        • et al.
        Early versus delayed laparoscopic cholecystectomy in treatment of acute cholecystitis.
        Bratisl Lek Listy. 2016; 117: 328-331
        • Rosenmuller M.H.
        • Thoren Ornberg M.
        • Myrnas T.
        • et al.
        Expertise-based randomized clinical trial of laparoscopic versus small-incision open cholecystectomy.
        Br J Surg. 2013; 100: 886-894
        • Roulin D.
        • Saadi A.
        • Di Mare L.
        • et al.
        Early versus delayed cholecystectomy for acute cholecystitis, are the 72 hours still the rule?: a randomized trial.
        Ann Surg. 2016; 264: 717-722
        • Sasaki A.
        • Ogawa M.
        • Tono C.
        • et al.
        Single-port versus multiport laparoscopic cholecystectomy: a prospective randomized clinical trial.
        Surg Laparosc Endosc Percutan Tech. 2012; 22: 396-399
        • Schwaitzberg S.D.
        • Roberts K.
        • Romanelli J.R.
        • et al.
        The NOVEL trial: natural orifice versus laparoscopic cholecystectomy: a prospective, randomized evaluation.
        Surg Endosc. 2018; 32: 2505-2516
        • Ainslie W.G.
        • Catton J.A.
        • Davides D.
        • et al.
        Micropuncture cholecystectomy vs conventional laparoscopic cholecystectomy: a randomized controlled trial.
        Surg Endosc. 2003; 17: 766-772
        • Chandler C.F.
        • Lane J.S.
        • Ferguson P.
        • et al.
        Prospective evaluation of early versus delayed laparoscopic cholecystectomy for treatment of acute cholecystitis.
        Am Surg. 2000; 66: 896-900
        • Johansson M.
        • Thune A.
        • Blomqvist A.
        • et al.
        Management of acute cholecystitis in the laparoscopic era: results of a prospective, randomized clinical trial.
        J Gastrointest Surg. 2003; 7: 642-645
        • Kolla S.B.
        • Aggarwal S.
        • Kumar A.
        • et al.
        Early versus delayed laparoscopic cholecystectomy for acute cholecystitis: a prospective randomized trial.
        Surg Endosc. 2004; 18: 1323-1327
        • Kumar M.
        • Agrawal C.S.
        • Gupta R.K.
        Three-port versus standard 4-port laparoscopic cholecystectomy: a randomized controlled clinical trial in a community-based teaching hospital in eastern Nepal.
        JSLS. 2007; 11: 358-362
        • Macafee D.A.
        • Humes D.J.
        • Bouliotis G.
        • et al.
        Prospective randomized trial using cost-utility analysis of early versus delayed laparoscopic cholecystectomy for acute gallbladder disease.
        Br J Surg. 2009; 96: 1031-1040
        • Yadav R.P.
        • Adhikary S.
        • Agrawal C.S.
        • et al.
        A comparative study of early vs delayed laparoscopic cholecystectomy in acute cholecystitis.
        Kathmandu Univ Med J. 2009; 7: 16-20
        • Liu E.H.
        • Zhu S.L.
        • Hu J.
        • et al.
        Intraoperative SPY reduces post-mastectomy skin flap complications: A systematic review and meta-analysis.
        Plast Reconstr Surg Glob Open. 2019; 7e2060
        • Mizrahi I.
        • Wexner S.D.
        Clinical role of fluorescence imaging in colorectal surgery: a review.
        Expert Rev Med Devices. 2017; 14: 75-82
        • Jeon F.H.K.
        • Varghese J.
        • Griffin M.
        • et al.
        Systematic review of methodologies used to assess mastectomy flap viability.
        BJS Open. 2018; 2: 175-184
        • Rother U.
        • Muller-Mohnssen H.
        • Lang W.
        • et al.
        Wound closure by means of free flap and arteriovenous loop: development of flap autonomy in the long-term follow-up.
        Int Wound J. 2020; 17: 107-116
        • Seth A.K.
        • Allen Jr., R.J.
        Modern techniques and alternative flaps in microsurgical breast reconstruction.
        J Surg Oncol. 2018; 118: 768-779
        • Blanco-Colino R.
        • Espin-Basany E.
        Intraoperative use of ICG fluorescence imaging to reduce the risk of anastomotic leakage in colorectal surgery: a systematic review and meta-analysis.
        Tech Coloproctol. 2018; 22: 15-23
        • Emile S.H.
        • Elfeki H.
        • Shalaby M.
        • et al.
        Sensitivity and specificity of indocyanine green near-infrared fluorescence imaging in detection of metastatic lymph nodes in colorectal cancer: Systematic review and meta-analysis.
        J Surg Oncol. 2017; 116: 730-740
        • Rausa E.
        • Zappa M.A.
        • Kelly M.E.
        • et al.
        A standardized use of intraoperative anastomotic testing in colorectal surgery in the new millennium: is technology taking over? A systematic review and network meta-analysis.
        Tech Coloproctol. 2019; 23: 625-631
        • Shen Y.
        • Yang T.
        • Yang J.
        • et al.
        Intraoperative indocyanine green fluorescence angiography to prevent anastomotic leak after low anterior resection for rectal cancer: a meta-analysis.
        ANZ J Surg. 2020; 90: 2193-2200
        • Charalampaki P.
        • Nakamura M.
        • Athanasopoulos D.
        • et al.
        Confocal-assisted multispectral fluorescent microscopy for brain tumor surgery.
        Front Oncol. 2019; 9: 583
        • Cho S.S.
        • Salinas R.
        • Lee J.Y.K.
        Indocyanine-green for fluorescence-guided surgery of brain tumors: Evidence, techniques, and practical experience.
        Front Surg. 2019; 6: 11
        • Dijkstra B.M.
        • Jeltema H.J.R.
        • Kruijff S.
        • et al.
        The application of fluorescence techniques in meningioma surgery: -a review.
        Neurosurg Rev. 2019; 42: 799-809
        • Khene Z.E.
        • Peyronnet B.
        • Gasmi A.
        • et al.
        Endophytic renal cell carcinoma treated with robot-assisted surgery: Functional outcomes: a comprehensive review of the current literature.
        Urol Int. 2020; : 1-8
        • Nakaseko Y.
        • Ishizawa T.
        • Saiura A.
        Fluorescence-guided surgery for liver tumors.
        J Surg Oncol. 2018; 118: 324-331
        • Newton A.D.
        • Predina J.D.
        • Nie S.
        • et al.
        Intraoperative fluorescence imaging in thoracic surgery.
        J Surg Oncol. 2018; 118: 344-355
        • Turner S.R.
        • Molena D.R.
        The role of intraoperative fluorescence imaging during esophagectomy.
        Thorac Surg Clin. 2018; 28: 567-571
        • Goyal A.
        New technologies for sentinel lymph node detection.
        Breast Care (Basel). 2018; 13: 349-353
        • Zeng H.C.
        • Hu J.L.
        • Bai J.W.
        • et al.
        Detection of sentinel lymph nodes with near-infrared imaging in malignancies.
        Mol Imaging Biol. 2019; 21: 219-227
        • Niebling M.G.
        • Pleijhuis R.G.
        • Bastiaannet E.
        • et al.
        A systematic review and meta-analyses of sentinel lymph node identification in breast cancer and melanoma, a plea for tracer mapping.
        Eur J Surg Oncol. 2016; 42: 466-473
        • Sugie T.
        • Ikeda T.
        • Kawaguchi A.
        • et al.
        Sentinel lymph node biopsy using indocyanine green fluorescence in early-stage breast cancer: a meta-analysis.
        Int J Clin Oncol. 2017; 22: 11-17
        • Zhang X.
        • Li Y.
        • Zhou Y.
        • et al.
        Diagnostic performance of indocyanine green-guided sentinel lymph node biopsy in breast cancer: A meta-analysis.
        PLoS One. 2016; 11e0155597
        • Ulain Q.
        • Han L.
        • Wu Q.
        • et al.
        Indocyanine green can stand alone in detecting sentinel lymph nodes in cervical cancer.
        J Int Med Res. 2018; 46: 4885-4897
        • Wu Y.
        • Jing J.
        • Wang J.
        • et al.
        Robotic-assisted sentinel lymph node mapping with indocyanine green in pelvic malignancies: a systematic review and meta-analysis.
        Front Oncol. 2019; 9: 585
        • Bodurtha Smith A.J.
        • Fader A.N.
        • Tanner E.J.
        Sentinel lymph node assessment in endometrial cancer: a systematic review and meta-analysis.
        Am J Obstet Gynecol. 2017; 216: 459-476.e10
        • Lin H.
        • Ding Z.
        • Kota V.G.
        • et al.
        Sentinel lymph node mapping in endometrial cancer: a systematic review and meta-analysis.
        Oncotarget. 2017; 8: 46601-46610
        • Sullivan S.A.
        • Rossi E.C.
        Sentinel lymph node biopsy in endometrial cancer: a new standard of care?.
        Curr Treat Options Oncol. 2017; 18: 62
        • Ankersmit M.
        • Bonjer H.J.
        • Hannink G.
        • et al.
        Near-infrared fluorescence imaging for sentinel lymph node identification in colon cancer: a prospective single-center study and systematic review with meta-analysis.
        Tech Coloproctol. 2019; 23: 1113-1126
        • He M.
        • Jiang Z.
        • Wang C.
        • et al.
        Diagnostic value of near-infrared or fluorescent indocyanine green guided sentinel lymph node mapping in gastric cancer: a systematic review and meta-analysis.
        J Surg Oncol. 2018; 118: 1243-1256
        • Huang L.
        • Wei T.
        • Chen J.
        • et al.
        Feasibility and diagnostic performance of dual-tracer-guided sentinel lymph node biopsy in cT1-2N0M0 gastric cancer: a systematic review and meta-analysis of diagnostic studies.
        World J Surg Oncol. 2017; 15: 103
        • Skubleny D.
        • Dang J.T.
        • Skulsky S.
        • et al.
        Diagnostic evaluation of sentinel lymph node biopsy using indocyanine green and infrared or fluorescent imaging in gastric cancer: a systematic review and meta-analysis.
        Surg Endosc. 2018; 32: 2620-2631
        • Takeuchi H.
        • Kitagawa Y.
        Sentinel node navigation surgery in patients with early gastric cancer.
        Dig Surg. 2013; 30: 104-111
        • Abbaci M.
        • De Leeuw F.
        • Breuskin I.
        • et al.
        Parathyroid gland management using optical technologies during thyroidectomy or parathyroidectomy: a systematic review.
        Oral Oncol. 2018; 87: 186-196
        • Bonnin-Pascual J.
        • Alvarez-Segurado C.
        • Jimenez-Segovia M.
        • et al.
        Contributions of fluorescence to endocrine surgery.
        Cir Esp. 2018; 96: 529-536
        • Fanaropoulou N.M.
        • Chorti A.
        • Markakis M.
        • et al.
        The use of Indocyanine green in endocrine surgery of the neck: a systematic review.
        Medicine (Baltimore). 2019; 98e14765
        • Abbaci M.
        • Conversano A.
        • De Leeuw F.
        • et al.
        Near-infrared fluorescence imaging for the prevention and management of breast cancer-related lymphedema: a systematic review.
        Eur J Surg Oncol. 2019; 45: 1778-1786
        • Aoki T.
        • Murakami M.
        • Yasuda D.
        • et al.
        Intraoperative fluorescent imaging using indocyanine green for liver mapping and cholangiography.
        J Hepatobiliary Pancreat Sci. 2010; 17: 590-594
        • Buchs N.C.
        • Hagen M.E.
        • Pugin F.
        • et al.
        Intra-operative fluorescent cholangiography using indocyanin green during robotic single site cholecystectomy.
        Int J Med Robot. 2012; 8: 436-440
        • Dip F.D.
        • Asbun D.
        • Rosales-Velderrain A.
        • et al.
        Cost analysis and effectiveness comparing the routine use of intraoperative fluorescent cholangiography with fluoroscopic cholangiogram in patients undergoing laparoscopic cholecystectomy.
        Surg Endosc. 2014; 28: 1838-1843
        • Sherwinter D.A.
        Identification of anomolous biliary anatomy using near-infrared cholangiography.
        J Gastrointest Surg. 2012; 16: 1814-1815
        • Dip F.
        • Sarotto L.
        • Roy L.
        • et al.
        Incisionless fluorescent cholangiography (IFC): a survey of surgeons on procedural familiarity, practices and perceptions.
        Surg Endosc. 2020; 34: 675-685
        • Lehrskov L.L.
        • Westen M.
        • Larsen S.S.
        • et al.
        Fluorescence or x-ray cholangiography in elective laparoscopic cholecystectomy: a randomized clinical trial.
        Br J Surg. 2020; 107: 655-661
        • Barbier L.
        • Souche R.
        • Slim K.
        • et al.
        Long-term consequences of bile duct injury after cholecystectomy.
        J Visc Surg. 2014; 151: 269-279
        • Parrilla P.
        • Robles R.
        • Varo E.
        • et al.
        Liver transplantation for bile duct injury after open and laparoscopic cholecystectomy.
        Br J Surg. 2014; 101: 63-68
        • Silva Filho J.
        • Coelho G.R.
        • Leite Filho J.A.D.
        • et al.
        Liver transplantation for bile duct injury after cholecystectomy.
        ARQ Gastroenterol. 2019; 56: 300-303
        • Yan J.Q.
        • Peng C.H.
        • Shen B.Y.
        • et al.
        Liver transplantation as a treatment for complicated bile duct injury.
        Hepatogastroenterology. 2011; 58: 8-13
        • Booij K.A.
        • de Reuver P.R.
        • Yap K.
        • et al.
        Morbidity and mortality after minor bile duct injury following laparoscopic cholecystectomy.
        Endoscopy. 2015; 47: 40-46
        • Altieri M.S.
        • Yang J.
        • Obeid N.
        • et al.
        Increasing bile duct injury and decreasing utilization of intraoperative cholangiogram and common bile duct exploration over 14 years: an analysis of outcomes in New York State.
        Surg Endosc. 2018; 32: 667-674